

Screen investigations for low energetic electron beams at PITZ

S. Rimjaem, J. Bähr, H.J. Grabosch, M. Groß

Contents

- Review of PITZ setup
- Screens and beam profile monitors at PITZ
- Test results
- Summary

Parameter	Value
Max. RF repetition rate	10 Hz
Max. RF power	6 MW peak power
Max. RF pulse length	800 μs
No. of pulses / train	1 – 800
Bunch spacing	0.2 – 1 μs
Max. bunch charge	a few nC

Photo Injector Test Faci<u>lity</u>

Current PITZ Setup (PITZ1.8)

high energy section (p_z ~24.8 MeV/c) low energy section (p_z ~6.7 MeV/c)

Measurements of Transverse Projected Emittance & Phase Space

Single slit scan technique

- EMSY stations consist of horizontal / vertical actuators with
 - YAG / OTR screens
 - 10 / 50 μm slits
- Beam size is measured @ EMSY position
 - Beam RMS sizes: 0.2 2.5 mm
- Beam divergence is estimated from beamlet sizes
 @ observation screen
 - Minimum beamlet RMS sizes: ~50 μm

Phase space reconstruction

- tomography module consists of
 - 3 FODO cells
 - 4 screen station
 - Phase advance of 45°
- Beam size is measured with a YAG / OTR screen
 - Minimum beam RMS sizes: 120 μm

Ce-doped Yttrium Aluminum Garnet (YAG) Powder Coating Screen

Chemical formula	Y ₃ Al _{2,5} Ga _{2,5} O ₁₂ :Ce
Thickness of YAG powder layer	5 - 20 μm
Density of YAG power	5.1 g/cm ³
Thickness of silicon substrate	100, 275 , 380 μm
Density of silicon substrate	2.33 g/cm ³
Incident angle	90°
Wavelength of peak emission	510 nm

YAG screen viewed by 12 bits camera

Resolution of beam image

- Beamlet image from 10 μm slit (03.06.2009)
 - Beam momentum ~14.7 MeV/c
 - Measured @ 1.76 m from slit position
- Detail structure of image ~50 μm
- Vertical RMS size <70 μm

Optical Transition Radiation (OTR) Screen

Material	Si-wafer with AI coating
Thickness of silicon wafer	100 or 275 μm
Incident angle	45°
Consider wavelength range	400 – 750 nm

Beam energy increase from ~15 to ~25 MeV

- ∆(energy) ~10 MeV
- ∆(intensity) ~40%

Wire Scanner (WS)

Wire material	tungsten
Wire size	20 µm
Average step size used in measurements	100 μm

Measured beamlet Y-profile from 50 µm slit

Measured with two straight wires (10 mm distance)

Chemical Vapour Deposition (CVD) Diamond Screen

thickness	100 μm
diameter	30 mm
Incident angle	45°
High thermal conductivity	5 times higher than Cu
Emission wavelengths	415 – 478 nm

Reference: M. Degenhard, "CVD Diamond Screens for Beamline Diagnosis at PETRA III", not yet publish

9

Comparison of YAG screen and wire scanner (WS)

YAG screen and wire scanner (WS): beam size & profile

rms beam size:
$$\sigma_{xy} = \sqrt{\sigma_x \sigma_y}$$

- Fixed parameters:
 - Momentum ~24.5 MeV/c
 - 1 bunch per train
 - Focusing (fixed main solenoid current)
 - Camera gain: 2 dB for H1.S4, 7 dB for H1.S5
- Varied parameters:
 - Bunch charge ~ 0.1, 0.2, 0.4, 0.6, 0.8, 1 nC

11

Comparison of YAG and OTR Screens

* use 12 bit camera and adjusted camera gain and no. of pulses to have intensity a bit below saturation

YAG and OTR screens: comparison of RMS beam size

RMS beam size:
$$\sigma_{xy} = \sqrt{\sigma_x \sigma_y}$$

 σ_{xy} : geometrical mean RMS size σ_x : horizontal RMS size σ_y : vertical RMS size

$$\delta\sigma(\%) = \left(\frac{\sigma_{YAG} - \sigma_{OTR}}{\sigma_{OTR}}\right) * 100\%$$

Included correction of different optical path length for YAG and OTR

- Not yet corrected for depth-of-field from 45° mounting configuration

Fixed parameters

Photo Injector Test Facility

- Momentum ~24.8 MeV/c
- No. of bunch per train: 1
- Camera gain
- Focusing (solenoid & quadrupole)

Screen	Screen YAG screen		OTR screen	
station	σ _x (mm)	σ _y (mm)	σ _x (mm)	σ _y (mm)
PST.Scr1	0.342	0.280	0.304	0.244
PST.Scr2	0.246	0.229	0.210	0.201
PST.Scr3	0.245	0.266	0.204	0.226
PST.Scr4	0.290	0.257	0.246	0.228

YAG and OTR screens: comparison sensitivity

Intensity is linearly proportional to bunch charge

- Measured @ H1.S4
- Fixed parameters:
 - Momentum ~24.8 MeV/c
 - Camera gain: 2 dB
- Varied parameters:
 - No. of bunches per train
 - Focusing (adjusted solenoid current to have the same beam area)

intensity per bunch = intensity per bunch per charge

Intensity is linearly proportional to camera gain

- Measured @ H1.S5
- Fixed parameters:
 - Momentum ~24.8 MeV/c
 - Bunch charge: YAG (200 pC), OTR (1 nC)
- Varied parameters:
 - Camera gain
 - No. of bunches per train
 - Focusing

YAG and OTR screens: dependence on momentum

RMS beam size: $\sigma_{xy} = \sqrt{\sigma_x \sigma_y}$

Intensity = integrating intensity per bunch per beam area per charge

RMS beam size and intensity vs. momentum @ H1.S5

- Included correction of beam size due to different optical path length
- Varied parameters:
 - No. of bunches per train
 - Bunch charge per train: YAG (200 pC), OTR (1 nC)
 - Camera gain
 - Focusing (solenoid current)

YAG and OTR screens: intensity distribution & projection profiles

YAG screen shows more detail structure of the beam image & profile (OTR: smoothing image and profiles)

Fixed parameters:

Photo Injector Test Facility

- Momentum ~24.5 MeV/c
- Bunch charge: 1 nC
- Focusing
- Camera gain: 1 dB
- Varied parameters:
 - No. of bunches per train
 - YAG: 1 bunch
 - OTR: 24 bunches

wire scanner profiles

Comparison of YAG and CVD diamond Screens

Optical system is not yet optimized: measured beam size value was not yet reliable

YAG and CVD diamond screens: sensitivity

Integrating intensity vs. bunch charge @ H2.S4

- Fixed parameters:
 - Momentum ~24.8 MeV/c
 - Camera gain: 20 dB
- Varied parameters:
 - No. of bunches per train
 - Focusing

$$\delta \sigma = \left(\frac{\sigma_{YAG} - \sigma_{CVD-diamond}}{\sigma_{CVD-diamond}}\right) \approx 36\%$$

YAG and CVD diamond screens: dependence on momentum

Photo Injector

Intensity = integrating intensity per bunch per beam area

RMS beam size vs. beam momentum @ H2.S4

18

- Fixed parameters:
 - Momentum: ~24.8 MeV/c
 - Bunch charge: 1 nC
 - Camera gain: 20 dB
- Varied parameters:
 - No. of bunches per train: YAG (1 bunch), CVD diamond (5 bunches)
 - Focusing (solenoid)

CVD diamond screen has more smoothing image and profiles

19

Summary & Outlooks

- Properties of YAG powder coating, OTR and CVD screens @ PITZ were summarized
- Test results of different screen type were presented
 - Sensitivity: YAG > CVD diamond > OTR
 - OTR provided smaller RMS beam size than YAG

Screen	Sensitivity	RMS beam size
YAG	100 %	100 %
OTR	4 %	84 %
CVD diamond	20 %	to be investigated

- Experimental tests to compare RMS beam sizes and beam profiles from wire scanner and from YAG screen at two locations were performed with different bunch charges
 - Results showed good agreement for both beam size and projection profiles

Acknowledgements

- G. Asova for data taken at the tomography module
- Y. Ivanisenko and G. Vaschenko for information and discussions about optical systems
- PITZ members

