

Investigation of Scintillation Screens for High Energetic Heavy Ion Beams at GSI

R. Krishnakumar, C. Andre, F. Becker, P. Forck, R. Haseitl, B. Walasek-Höhne

GSI DARMSTADT

W. Ensinger

TECHNICAL UNIVERSITY DARMSTADT

Plan of talk

- \succ Motivation
- \succ Experimental setup
- \succ Results
- \succ Conclusion

Motivation and Beam parameters

- SIS 18 features
- ■200 MeV/u < E < 3 GeV/u
- $(56 \% < \beta < 98 \%)$
- •All ion species

•Up to 10¹¹ particles per pulse

R. Krishnakumar Scintillation screens for high energetic heavy ion beams

Behaviour of screens @ high energies

Profile reproduction, light output, Radiation hardness

To be investigated for FAIR

Experiments

- •U @ 269 MeV/u
- •10⁴ to 10⁹ particles per pulse
- I m upstream of a Beam dump
- Current measurement-IC & SEM

Investigated Scintillators

Type	Material	Producers
Single crystal	CsI:TI YAG:Ce	Saint Gobain Crystal
Phosphor screen	P43 (Gd ₂ O ₂ S:Tb)	Proxitronic
Glass	<i>Quartz (Herasil 102) Quartz:Ce (M382)</i>	Heraeus Quarzglas
Ceramics	$Al_2O_3:Cr, Al_2O_3$ $ZrO_2:Mg (Z507)$ $ZrO_2:Y (Z700)$	BCE Special Ceramics

To compare imaging property of different materials

Scintillating effect of different screens

14.02.2011

Optical setup

- Camera: AVT Marlin
- ≻without IR cut filter
- ≻VGA resolution
- ➢ Firewire interface
- ≻Trigger mode
- ≻Variable exposure time
- ≻Variable gain settings
- ≻Data acquisation-BeamView

- Lens system: Pentax lens ≻16mm focal length ≻Remote controlled iris
 - >Dynamic range of 4 orders of magnitude

Spectral sensitivity of CCD

Experimental Setup at HTP

Energy loss per ion in scintillators Minimum: 28 MeV/u (6.7 GeV) Maximum: 54 MeV/u (13 GeV) Target ladder \rightarrow 110 *11.5 cm Sample size \rightarrow 5 to 8 cm diameter

Target ladder mounted on linear drive moved by a stepper motor

R. Krishnakumar Scintillation screens for high energetic heavy ion beams

14.02.2011

Data evaluation

Background picture before each pulse

Different algorithm for data evaluation \rightarrow similar trend is observed

14.02.2011

8

Results: light output

CsI:Tl and YAG:Ce shows the highest light output

Parameters: U@ 269 MeV/u 10⁴ to 10⁹ ppp 300 ms pulse length

Results: light output

CsI:Tl and YAG:Ce shows the highest light output Phosphour screen took the 3rd place

Parameters: U@ 269 MeV/u 10⁴ to 10⁹ ppp 300 ms pulse length

CsI:Tl and YAG:Ce shows the highest light output Phosphor screen took the 3rd place Al_2O_3 : Cr shows one order of magnitude more light than Al_2O_3

Parameters: U@ 269 MeV/u 10⁴ to 10⁹ ppp 300 ms pulse length

Results: light output

CsI:Tl and YAG:Ce shows the highest light output Phosphor screen took the 3rd place Al_2O_3 : Cr shows one order of magnitude more light than Al_2O_3 Herasil gives the lowest light output

Parameters: U@ 269 MeV/u 10⁴ to 10⁹ ppp 300 ms pulse length

R. Krishnakumar Scintillation screens for high energetic heavy ion beams

Results: Profile Reproduction

Scintillation screens for high energetic heavy ion beams

Kurtosis

Peakedness of the distribution

<u>14.02.2011</u> **IS IS 1**

Broad Beam Width

 σ of Gaussian fit

CsI:Tl and YAG:Ce shows relatively broad beam profile

 $Reason \rightarrow attributed \ to$

Herasil being a glass material does not show this effect !

Has to be investigated further

Conclusion

Light output

- CsI:Tl ,YAG:Ce, P43, Al_2O_3 :Cr, Al_2O_3 , Herasil shows linear light output
- Al_2O_3 : Cr shows an order of magnitude more light than Al_2O_3
- •Herasil gives the low light yield but linear
- •Z507 seems get saturated at higher intensities

Beam width

- •CsI:Tl gives the largest while herasil gives smallest beamwidth
- P43, Al_2O_3 : Cr, Al_2O_3 gives a comparable result \rightarrow difference less than 7%
- Broadening of profile @ higher intensities for some samples

Future work

- ≻Various Ion Beams, Different energies
- \succ Spectroscopic investigation
- >Investigation of radiation damage in materials

THANK YOU FOR YOUR KIND ATTENTION

R. Krishnakumar Scintillation screens for high energetic heavy ion beams

14.02.2011