

Screens for low current beams

We started with beam diagnostics for the EXCYT facility

Low energy beam imaging

CsI(TI) scintillating plate with CCD video camera

High light yield of CsI(TI) ~ 65000 photons/MeV (for gamma rays)

beam diagnostics of very lowenergy and low-intensity ion beams from the Tandem injector at LNS

	Mass n.	Ion species	Beam current	Beam current
	12	C.		
	12	C	-	- 1.5
	16	0.	325	CCD saturation
	17	¹⁷ O ⁻	-	- 3.2
	18	$^{18}O^{-}, H_2O^{-}$	-	- 2.4
	19	F ⁻	-	- 0.3
	24	C_2^{-}	-	- 0.4
• [27	Al	-	- 3.4
	(*) 32	O_2^{-}, S^{-}	1	- 5.3
	34	${}^{34}S^{-}, H_2O_2^{-}$	-	- 5.0
	35	Cl ⁻	-	- 3.8
	43	AlO ⁻	48	CCD saturation
	58	⁵⁸ Ni ⁻	16	CCD saturation
	60	⁶⁰ Ni ⁻	6	CCD saturation
	62	⁶² Ni ⁻	-	- 4.2
	(*) 74	³⁹ K ³⁵ Cl ⁻	2	- 9.4
	76	39 K ³⁷ Cl ⁻ + 41 K ³⁵ Cl ⁻	-	- 4.2
Ī	107	¹⁰⁷ Ag ⁻	11	CCD saturation
ſ	109	¹⁰⁹ Ag	9	CCD saturation

⁹⁰Sr beta source to simulate radioactive beam decay

Workshop on Scintillating Screen Applications in Beam Diagnostics - GSI, February 14-15, 2011

7

EXCYT beam diagnostics: LEBI

Low Energy Beam Imager-Identifier

A complex diagnostics station that combines several techniques for beam detection and identification

Micro-beam diagnostics: the SFOP

4 frames extracted from a real time movie taken while the multi-collimator mask was sliding down

Workshop on Scintillating Screen Applications in Beam Diagnostics - GSI, February 14-15, 2011

P.Finocchiaro

13

Scintillating screens for very low beam intensity with a cooled CCD still camera

Scintillating screens for very low beam intensity with a cooled CCD still camera

high performance camera 14-bit CCD

Conclusions

- different techniques tested/employed at LNS for beam imaging with scintillating screens
- scintillators are a tradeoff solution between robustness, ease-of-use, and cost
- Csl(Tl), doped glass, and plastics (in some cases) offer good performance
 - radiation degradation of performance?
- cheap & compact CCD video cameras show very nice performance
- high performance 14-bit CCD still camera + CsI(TI) allows top sensitivity

Thank you!