A very rough summary of an interesting and exiting workshop.

The following slides should force a discussion!!!

Can we trust the image?

So far, OTR is the reference as long as there is no COTR!

Workshop on Scintillating Screen Applications in Beam Diagnostics, GSI, Darmstadt, February 144-154, 2011

YAG and OTR screens: intensity distribution & projection profiles

YAG screen shows more detail structure of the beam image & profile (OTR: smoothing image and profiles)

Fixed parameters:

Photo Injector Test Facility

- Momentum ~24.5 MeV/c
- Bunch charge: 1 nC
- Focusing
- Camera gain: 1 dB
- Vary parameters:
 - No. of bunches per train
 - YAG: 1 bunch
 - OTR: 24 bunches

Measurement at 130 MeV

- Comparison to beam size measurement with optical transition radiation shows good agreement down to 60 μm rms
- Gauss fit to beam size; error bars represent statistical variation in 5 images each
- 200 pC electron beam

Rasmus Ischebeck – Scintillators for SwissFEL

Screen Resolution Results

- constant current
- camera mag = 1
- pixel size 4.65 μm

PSF width for several screens

	Thickness (μm)				
	500	400	200	100	5
CdWO4	13.5	10	8	7	-
LuAG	-	10	8	-	-
P43	-	-	-	-	6

Results

• vertical beam size

horizontal beam size

mean values

dependency on observation geometry

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011

Light yield and profile width @ low intensity

Beam parameters: ⁴⁰Ar¹⁰⁺, 11.4MeV/u, **2*10⁹** lons/Pulse in 100μs, ~30μA, 2.4Hz, 1000 beam pulses

What is the useful operating range of an Al₂O₃ Screen?

Result: Light yield is the same for both energies. For the 11.4 MeV/u case, the imaged beam profile does not math to both reference methods.

on Scintillating Screen Applications @ GSI Eiko Gütlich

Light yield and profile width @ higher intensity

The radial dose distribution of an ion track

Eiko Gütlich

Results: Profile Reproduction 300MeV/u

Csl:Tl YAG:Ce

Intraband luminescence (IBL)

Spectra of fast (τ < 2 ns) intraband (IBL) luminescence under irradiation by single nanosecond 300-keV electron pulses of the Kovalchuk-Mesyats-type generator

A. Lushchik, Ch. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil'chenko, Nucl. Instr. and Meth. B <u>250</u> 330 (2006)

Multiplication of electronic excitations (MEE)

<u>Three mechanisms of MEE in dielectrics:</u>
(a) electron-hole, (b) excitonic and
(c, d) solid-state analogue of the Franck-Hertz effect in gases. QY >1

Solutions

Some proposals

- The best resolution is achieved in BGO crystal with the biggest refractive index among the 3 materials.
- larger refractive index seems to have better resolution (but weak influence)

Collated Powder-Screen Data

- Evaluation of reports on beam imaging show trend after invoking Eq. 1 for determining resolution term.
- Collect additional data reports at this workshop.

Motivation Scintillation screen + gated camera

Camera image: FLASH, 13SMATCH section, 9.Jan.2011

Intraband luminescence (IBL)

Spectra of fast (τ < 2 ns) intraband (IBL) luminescence under irradiation by single nanosecond 300-keV electron pulses of the Kovalchuk-Mesyats-type generator

A. Lushchik, Ch. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil'chenko, Nucl. Instr. and Meth. B <u>250</u> 330 (2006)

Use of OTR for highly charged Ion beams possible?

We need High Dynamic Range! With µm resolution!

• And screen material with no degradation (radiation damage) and saturation.

- Scintillators degrade (faster for low-energy beams)
- We are missing quantitative data of light yield vs dose
- Can we understand (predict) the damage mechanism?
- Calibration procedure for quantitative applications?

Further Topics

- Common set of parameters for comparison.
- Camera shielding/rad hard devices
- Light yield/efficiency/uniformity of various materials (sorry for not treating in the summary)

Have a save trip home!