Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams

Gero Kube, Christopher Behrens (DESY), Werner Lauth (IKP, Mainz)
gero.kube@desy.de

- Introduction
- Results of Test Experiment @ MAMI
- Outlook
Standard Diagnostics in Linacs: OTR

- **transition radiation**: electromagnetic radiation emitted when a charged particle crosses boundary between two media with different optical properties.

- **visible part**: Optical Transition Radiation (OTR)

- **beam diagnostics**: backward OTR (reflection of virtual photons)

 typical setup: image beam profile with optical system

 → beam image and measurements of beam shape and size

Angular distribution

- For $E = 1$ GeV
- $\theta = 1/\gamma = 0.5$ mrad

courtesy:

K. Honkavaara (DESY)
OTR Diagnostics: Pitfalls

- Linac Coherent Light Source (LCLS) @ SLAC

![Linac Diagram](image)

OTR monitor observation with BC1, BC2 switched on

- OTR 12
- OTR 22

measured spot is no beam image

interpretation: coherent OTR (COTR) emission

- strong compression in bunch compressors

in the meantime COTR also at FLASH

long bunch ($\lambda<\sigma_z$)

short bunch ($\lambda>\sigma_z$)

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011
Consequences & Alternatives

- **LCLS**: coherent emission compromise use of OTR as reliable beam diagnostics
 → wire scanners for transverse beam diagnostics instead of OTR

- **profile diagnostics based on transition radiation**
 reduce coherent effects: observation at smaller wavelength
 → **EUV/XUV transition radiation imaging**
 (in collaboration with Tomsk Polytechnic University, Russia and Institut für Kernphysik, Mainz University)

 1. spectral range of coherent emission ?
 2. EUV/XUV optics expensive and difficult to handle

- **profile diagnostics based on different physical processes**
 - **wire scanners** → in preparation for dedicated positions @ XFEL
 - **luminescent screen monitors** → widely used at hadron accelerators
 nearly no information for high-energy electron machines

⇒ motivation for test experiment
Inorganic Scintillators

- **properties**
 - radiation resistant \(\rightarrow\) widely used in high energy physics, astrophysics, dosimetry,…
 - high stopping power \(\rightarrow\) high light yield
 - short decay time \(\rightarrow\) reduced saturation

- **generation of scintillation light**
 - energy conversion \(\text{(characteristic time } 10^{-18} - 10^{-9} \text{ sec)}\)
 - Formation of el. magn. shower. Below threshold of e^+e^- pair creation relaxation of primary electrons/holes by generation of secondary ones, phonons, plasmons, and other electronic excitations.
 - thermalization of seconray electrons/holes \(\text{(10^{-16} – 10^{-12} sec)}\)
 - Inelastic processes: cooling down the energy by coupling to the lattice vibration modes until they reach top of valence resp. bottom of conduction band.
 - transfer to luminescent center \(\text{(10^{-12} – 10^{-8} sec)}\)
 - Energy transfer from e-h pairs to luminescent centers.
 - photon emission \(\text{ (> 10^{-10} sec)}\)
 - radiative relaxation of excited luminescence centers

http://crystalclear.web.cern.ch/crystalclear/
Implication on Transverse Resolution

Which effects may affect transverse resolution?

- light generation: energy conversion → transverse range of ionization
- light propagation → total reflection at scintillator surface

energy conversion

- "thick target": formation of electromagnetic shower
 (thickness in the order of radiation length X_0)

- transverse shower dimension: Molière radius as scaling variable
 → containing 90% of shower energy

$$R_M \approx 0.0265 \times X_0 \times (Z +1.2)$$

X_0: radiation length, Z: atomic number

F. Schmidt, "CORSIKA Shower Images", http://www.ast.leeds.ac.uk/~fs/showerimages.html
Implication on Transverse Resolution

- **energy loss**
 - Bethe-Bloch (collision)
 - Bremsstrahlung (radiative)

- **energy deposition in "thin target"**
 - ignore radiative contribution
 - thickness / $X_0 \approx 10^{-2}$
 - small amount of re-absorption in material

- **ionization: interaction of particle em. field with lattice**
 - particle field
 - virtual photons, in classical picture transverse evanescent waves
 - relativistic rise
 - increase of transverse field extension
 - Fermi plateau
 - cancellation of incoming particle field by induced polarization field
 - of electrons in medium
 - saturation range as scaling variable R_5

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011
Implication on Transverse Resolution

- **extension radius**
 - limiting value:
 \[
 R_\delta = \frac{c}{\omega} \sqrt{1 - \varepsilon(\omega)}
 \]
 \(\varepsilon(\omega)\): complex dielectric function
 - approximation as free electron gas (Drude model)
 \[
 R_\delta = \frac{hc}{\hbar \omega_p}
 \]
 \(\omega_p\): plasma frequency
 \[
 \hbar \omega_p = 28.816 \sqrt{\rho \langle Z/A \rangle} \text{ eV}
 \]

- **light propagation**
 - light generated inside scintillator has to cross surface
 - refractive index \(n\)
 - inorganic scintillators
 \(\rightarrow\) high \(n\), i.e. large contribution of total reflection

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011
Scintillator Material Properties

![Graph showing refractive index vs. R_nm for various scintillator materials including BGO, GSO, LuAG, LSO, LuAP, PWO, CWO, NBWO, YAG, and YAP.]

- **Scintillators under investigation**
 - BGO: 0.5 mm
 - PWO: 0.3 mm
 - LYSO: 0.8 mm, 0.5 mm (Prelude 420)
 - YAG: 1.0 mm, 0.2 mm, phosphor

<table>
<thead>
<tr>
<th>Scintillator Type</th>
<th>Density (g/cm³)</th>
<th>ħωₚ (eV)</th>
<th>Rₘ (cm)</th>
<th>λ_max (nm)</th>
<th>Yield (1/keV)</th>
<th>n @ λ_max</th>
<th>R₆ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGO</td>
<td>7.13</td>
<td>49.9</td>
<td>2.23</td>
<td>480</td>
<td>8</td>
<td>2.15</td>
<td>3.95</td>
</tr>
<tr>
<td>PWO</td>
<td>8.28</td>
<td>53.3</td>
<td>2.00</td>
<td>420</td>
<td>0.1</td>
<td>2.16</td>
<td>3.70</td>
</tr>
<tr>
<td>LSO:Ce</td>
<td>7.1</td>
<td>51.3</td>
<td>2.08</td>
<td>420</td>
<td>32</td>
<td>1.82</td>
<td>3.85</td>
</tr>
<tr>
<td>YAG:Ce</td>
<td>4.55</td>
<td>45.5</td>
<td>2.77</td>
<td>550</td>
<td>11</td>
<td>1.95</td>
<td>4.34</td>
</tr>
</tbody>
</table>
Mainz Microtron MAMI

Institute of Nuclear Physics, University of Mainz (Germany)

3 cascaded Racetrack Microtrons: \(E_{\text{max}} = 855 \text{ MeV} \)
double-sided Microtron (HDSM): \(E_{\text{max}} = 1.5 \text{ GeV} \)
100 % duty cycle
polarized electron beam (~ 80%)
Experimental Setup

- **target**

- **observation geometry**
 - -22.5° w.r.t. beam axis

camera: BASLER A311f
- 659 x 494 pixel
- pixel size 9.9μm x 9.9μm
Beam Images

- **measurement and analysis:**

 - **I = 46 pA**

 - 5 signal and 1 background frame

- **LYSO:Ce**
 - (0.5mm)

- **LYSO:Ce**
 - (0.8mm)

- **YAG:Ce**
 - (powder)

- **YAG:Ce**
 - (0.2mm)

- **BGO**
 - (0.5mm)

- **PWO**
 - (0.3mm)

- **YAG:Ce**
 - (1mm)

- **Al₂O₃**
 - (0.5mm)

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011
Results

- vertical beam size

![Graph showing vertical beam size](image)

- horizontal beam size

![Graph showing horizontal beam size](image)

mean values

![Bar chart showing mean values](image)

dependency on observation geometry
Observation Geometry

- beam diagnostics
 - popular OTR-like observation geometry:
 - 45° tilt of screen
 - observation under 90°

- scintillator tilt versus beam axis
 - BGO crystal
 - micro-focused beam
 - $I = 3.8 \, \text{nA}$

- measured beam spots

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011
Simulation of Light Propagation

Analysis:
- ZEMAX calculation of 2-dim PSF
- calculation of 2-dim beam profile
- convolution of PSF and beam profile
- horizontal / vertical projection of resulting distribution
- determination of 2nd moment (standard deviation)

![Image of simulation and experiment results at different angles]
Comparison

- satisfactory agreement between simulation and measurement
 - simulation reproduces observed trend in beam size
- measured beam size systematically larger than simulated one
 - effect of extension radius not included in calculation → increase in PSF

Results summarized in IPAC’10 proceedings: G. Kube, C. Behrens, W. Lauth, MOPD088
Future Plans

- continue search for optimum scintillator material
- direct comparison with OTR diagnostics
- influence on observation geometry for different materials (and thicknesses)
 - new test experiment @ MAMI, March 2011
- COTR generation at scintillators
 - contribution of M. Yan

open points

- influence of luminescent centers on resolution
 - different dopants, different concentration?
- screen saturation
 - saturation at high intensities (> 0.04 pC/cm²) observed for YAG:Ce screens (A. Murokh et al., Proc. PAC 2001, 1333)
 - material properties of interest:
 - band gap
 - scintillation decay time
Luminescent Types

- **Exciton luminescence: BGO, ...**
 Ionization/excitation by radiation creates unbound e-h pairs or bound e-h pairs called excitons. Excitons can move rather freely in crystals, caught at impurities, defects, and so on, and the STE (self-trapped excitons) gives luminescence upon radiative recombination.

- **Dopant luminescence: GSO:Ce, ...**
 Radiative recombination of STE at dopant (activator) ions.

- **Charge-transfer luminescence**
 Belongs to exciton luminescence. Due to charge transfer where initial and final states are different, selection rules for EM transition are loosened, thereby enhancing transition probability.

- **CVL (Core-valence luminescence, Cross luminescence)**
 After excitation of the core-valence electron, an electron in the valence band recombines with the resultant hole radiatively. To avoid Auger process, $E_{VC} < E_g$ is necessary. BaF$_2$, CsF, LiF,
Luminescence

- luminescence in configurational coordinate diagram

R = inter-atomic distance between ground state of ligand atom and the excited state of luminescence centre atom

M. Kobayashi (KEK):
Introduction to Scintillators