Scintillator screens at Diamond

Cyrille Thomas

Contents

- Diamond screens layout
 - From LINAC to SR
- Electron beam transverse size in the BTS
 - Comparison YAG:Ce and OTR with 3 GeV electrons
- X-ray camera scintillators
 - X-ray screen resolution, speed, linearity, etc.

Diamond Screens Layout

- 17 screens in injector:
 - Linac: electrons: 90 keV to 100 MeV
 - 4 YAG
 - 1 OTR
 - LTB: electrons 100 MeV
 - 4 OTR
 - 4 YAG:Ce
 - Booster: electrons: 100 keV to 3 GeV
 - 2 OTRs
 - BTS: 3 GeV
 - 4 OTRs
 - 2 YAG
- Diagnostics test area
 - 4 OTR / YAG
- SR: 3 GeV
 - 2 X-Ray pinhole cameras

Beam Profiles in the Diamond Injector

Electron Beam Transverse Size in the BTS

- 4 screens positions in drift space
 - Beam profile with YAG:Ce (100 µm thick)
 - Beam profile with OTRs (5 μm thick Mylar with Al coating)
 - Single shot emittance measurement

3 GeV electro

Screen Comparison and Scattering Effects

- YAG:Ce presents sensitivity so that small charge can be detected (<<1pC for 2x0.2 mm²)
- OTR less sensitivity detection limit (70pC for 2x0.2 mm²) with flea2 CCD cameras
- Resolution: appears to be sufficient to measure beam size down to 100 µm - better resolution need to be measured
- Linearity has been checked against measured charge

X-ray Camera Scintillators

- Screen resolution
 - LuAG, CdWO₄ and P43 Compared
- Linearity
 - Test against a diode
- Speed and photon yield
 - Measurement with fast camera

X-ray power spectrum from bending magnet

Screen Resolution Measurement

Mask with sharp edge (W)

Bending magnet SR fan

screen lens camera

Resolution Measurement Example

Screen Resolution Results

- Nominal electron beam (K=1%)
- constant current
- camera mag = 1
- pixel size 4.65 μm

PSF width for several screens

1 C1 Width 101 CCVCIGI CC1CC1					
	Thickness (μm)				
	500	400	200	100	5
CdWO4	13.5	10	8	7	-
LuAG	-	10	8	-	-
P43	-	-	-	-	6

ond

Improved System Resolution

- New camera design
 - magnification = 4
 - pixel size = 4.65 μm
 - CdWO4 (200 µm thick)
- Measurement varying photon energy
- PSF width: ~2.5 μm deduced from beam size and geometric optics predictions

Beam profile through focussed point of CRL

15th February 2011

Scintillating Sci

Screen Linearity

• Linearity measurement with diode against ion chamber signal

Set up:

Speed and Photon Yield

- Photon yield: 30 ph / keV
- Short response: ex. CdWO4 has typically 20µs
 - Can be used with fast cameras to observe kHz beam motion
 - Examples:
 - Electron beam motion from kickers
 - Photon beam: beamline stability

Kicker effect on the stored beam

Camera: 1500 fps

pixels = 7.4 mm

magnification = 1

Screen LuAG (200 µm)

50 % of σ_{vert} vertical displacement

250 % rel. increase of beam size

$$\Rightarrow$$
 $\sigma_{hor.}$ = 145 μm

$$\Rightarrow \sigma_{\text{vert}} = 67 \ \mu\text{m}$$

Large reduction of the intensity across an aperture

Beam motion seen by the bunch by bunch and fast camera (1500 fps)

600 μ s = 300 turns = 9000 betatron oscillations

Beamlines Stability

Camera: 200 fps

pixels = 7.4 mm magnification = 1

Screen: CdWO₄ (200 µm)

Std: $0.3 \times 1 \mu m$ \equiv 0.9 x 2.5 % of the beam size

Vertical motion $5 \mu m \equiv 0.2 \mu rad from DCM$

Photon beam centroid motion at sample position

Conclusion

- OTR and YAG:Ce used at Diamond for injector diagnostics. YAG:Ce mainly for low energy electrons, OTR for > 100 MeV electrons.
- Comparison YAG:Ce vs OTR (extra thin):
 - OTR best resolution (from literature however never measured at Diamond)
 - YAG best sensitivity
 - OTR scattering negligible whereas 100um thick YAG gives significant scattering to 3GeV beam: thin OTR could be used as permanent diagnostics
- Crystals for hard X-rays:
 - Different sensitivity depending on mainly their absorption coefficient
 - Resolution depends mainly on screen thickness (normal incidence) <u>and</u> optical imaging system performance
 - Linearity permits true representation of the imaged photon beam
 - Speed and high photon yield allows short time exposure imaging thus it renders possible the use of fast camera

