

Scintillating Screens for laser-accelerated relativistic electron bunch diagnostics

<u>A. Buck</u>, A. Popp, K. Schmid, C. M. S. Sears, L. Veisz, S. Karsch, F. Krausz Ludwigs-Maximilians-Universität, München Max-Planck-Institut für Quantenoptik, Garching

K. Zeil, A. Jochmann, S. D. Kraft, J. Pawelke, R. Sauerbrey, T. Cowan, U. Schramm Forschungszentrum Dresden-Rossendorf

> B. Hidding, T. Kudyakov Heinrich-Heine-Universität, Düsseldorf

Outline

- o Laser-driven electron acceleration
- o Typical setup and electron detection
- o Charge calibration at ELBE accelerator
 @ Forschungszentrum Dresden Rossendorf
- o Summary

Relativistic electron acceleration

"Conventional" radio-frequency accelerators:

Maximum accelerating fields limited due to breakdown

- ➤ Maximum field: E_{max} ≈ 100MV/m
- many km long accelerators needed
- Expensive
- Long pulse duration
- Big timing jitter

• Alternative: Laser-plasma-based Accelerators:

Already ionized acceleration medium \rightarrow no breakdown

- ➢ Possible fields: E ≈ 100GV/m 1TV/m
- \succ 10³ 10⁴ times higher
- Shorter acceleration distance
- Intrinsically short (few fs) pulses
- Intrinsically synchronized with laser pulse

Supersonic Helium Gas Jet

Laser acceleration milestones

- Typical: Ti:Sa-systems, 30 fs, $\sim 1~J$

15.02.2011

"Bubble" acceleration

toworld.d

WWW

- Laser-electron acceleration is evolving, but still large shot-to-shot fluctuation are present
 - → Single-shot characterization techniques necessary
- Interesting parameters
 - Electron energy spectrum
 - Charge in electron bunch
 - Divergence and pointing
- Parameter range:
 - Charge: 0.1 100 pC
 - Energy: few MeV to 1 GeV

Typical electron acceleration setup

• Glinec, Y. et al. Rev. Sci. Instrum., 77, 103301 (2006).

Plastic screens with a layer of powdered inorganic scintillator (,,Lanex" screens)

• Kodak

- Lanex Regular
- Lanex Fine
- Biomax MS
- Biomax TranScreen HE
- Biomax TranScreen LE

• Cawo

- OG 16
- Konica
 - KR

Calibration of scintillating screens

Measurements at ELBE linear accelerator in Dresden:

Electron energy: 40 MeV
Maximum charge per bunch: 50 pC
Pulse duration: 2 ps
Pulse spacing: 154 ns

Charge and number of bunches are variable.

- Linearity over more than four orders of magnitude measured
- Absolute calibration for each screen determined

Saturation!

Screen	Absolute calibration (10 ⁹ photons/sr/pC)	$\frac{N_{scint}/N_{CLS,20\ ms}/Q}{(pC^{-1})}$	$ ho_{sat}$ (see Sec. III C) (pC/mm ²)
KODAK Biomax MS	14.8 ± 1.3	5.79 ± 0.26	21.8 ± 5.0
CAWO OG 16	12.4 ± 1.1	4.86 ± 0.21	32.9 ± 6.6
KODAK Biomax Transcreen HE	7.85 ± 0.67	3.02 ± 0.13	47 ± 10
KODAK Lanex Regular	6.95 ± 0.60	2.72 ± 0.12	66 ± 33
KONICA KR	6.58 ± 0.56	2.58 ± 0.11	>100
KODAK Biomax Transcreen LE	1.79 ± 0.15	0.700 ± 0.031	>100
KODAK Lanex Fine	1.75 ± 0.15	0.686 ± 0.030	>100
KONICA KF	1.54 ± 0.13	0.602 ± 0.027	>100

- Small deviation from the linear behaviour measured Starting around 20 pC/mm²
- Nonlinearity can be corrected
- Screens are linear in the regime currently available

• Buck, A. et al. Rev. Sci. Instrum., 81, 033301 (2010).

13

- Inorganic scintillating screens are commonly used in laser-driven electron acceleration experiments
- The screens have been absolutely calibrated at a linear accelerator (ELBE, Dresden-Rossendorf)
- Linear behaviour over several orders of magnitude confirmed
- Nonlinear effects found for high charges

Energy dependence of scintillators 10^{0} Energy deposited [MeV] 10⁻¹ 10⁻² 10^{-10} $\frac{10^{1}}{10^{1}}$ 10^{-2} 10^{-1} 10^{2} 10^{3} Electron energy [MeV]

Scintillating Screen Workshop GSI

ttoworld.d Resolution of the different screens WWW. 100 Modulation Transfer Function (%) – KODAK Lanex Regular - CAWO OG 16 80 60 40 20 0 2 3 5 0 1 4

Line pairs per mm