Luminescence and defects creation at the relaxation of various electronic excitations in wide-gap materials

Aleksandr Lushchik

Workshop "Scintillating Screen Applications in Beam Diagnostics", GSI, Darmstadt, February 15, 2011

Outline

- Intracenter and recombination impurity luminescence. Thermal quenching
- Emission of free and self-trapped excitons in metal halides and oxides
- Core-valence luminescence (crossluminescence)
- Types of hot luminescence. Electron and hole intraband luminescence
- Multiplication of electronic excitations. Enhanced local density of EEs
- Creation spectra of Frenkel defects by synchrotron radiation. A role of hot *e*-*h* recombination in the materials with $E_g < E_{FD}$
- Competition between decay channels of EEs

Intrinsic and impurity excitations in a wide-gap crystal

Absorption spectrum of a typical ionic crystal (KF)

Thermal stability of impurity luminescence

5

Thermal quenching of impurity luminescence

For KCI:Tl $\mathcal{E} \approx 1.3 \text{ eV}$ Usually, $d_0 \approx 10^{-13} \text{ s}^{-1} \approx \overline{\omega}_{\text{eff}}$. $\Delta n = \pm 1$ and even in case of 50 phonons relaxation time $10^{-13} \times 50 < 10^{-11} \text{ s}$

Potential curves for a ground and an excited state of different impurity centres

Introduction of RE³⁺ into binary and complex metal oxides with high resistance against radiation

Rare-earth ions with 1 to 144f-electrons: Ce^{3+} Pr^{3+} Nd^{3+} Pm^{3+} Sm^{3+} Eu^{3+} Gd^{3+} Tb^{3+} Dy^{3+} Ho^{3+} Er^{3+} Tm^{3+} Yb^{3+} Lu^{3+}

<u>Line</u> emission spectra, f-f transitions, from IR to UV

Recombination luminescence (RL)

 $\sigma_{\rm r}$ – recombination cross-section

<u>Two types of hole traps</u>: with an effective charge or neutral ones with respect to the crystal lattice

$$\sigma_{\rm r}^{\rm Coulomb} >> \sigma_{\rm r}^{\rm neutral}$$

Quenching of impurity recombination luminescence: intracentre nonradiative transitions + external thermal quenching 9

Tunnel luminescence (TL)

Deep electron and hole traps are needed to observe TL above RT.

In AHCs, $E_{\rm e}$ for an F centre equals 2-3 eV

Self-trapping of holes takes place in some WGMs

Free and self-trapped excitons (FE and STE) in metal oxides

Exciton-phonon interaction is responsible for the coexistence of FE and STE. *AHCs*: NaI NaBr KI KBr

Free (FE) and self-trapped exciton (STE) emission.

MgO	FE		
BeO	FE	STE	
α -Al ₂ O ₃		STE	

All the above-mentioned exciton emissions are lowtemperature ones.

Emissions of bound excitons !!

Core-valence or crossluminescence (CL)

Auger $\tau \approx 1 \text{ ns} = 10^{-9} \text{ s}$ CL processes energetic yield $\approx 10^{-1}$ - 10^{-2} (a)**(b**) (\boldsymbol{d}) **(***c***)** (*a*) We have both cross- and $E_{\rm gc} < 2E_{\rm ga}$ $E_{\rm gc} = 2E_{\rm ga}$ $E_{\rm gc} > 2E_{\rm ga}$ $E_{\rm gc} > 2(E_{\rm ga} + \Delta E_{\rm v})$ recombination luminescence $E_{\rm gc} < 2E_{\rm ga}$ c - band (c) Auger processes, no CL at $E_{\rm gc} > 2E_{\rm ga}$ (*d*) We have CL at $2E_{\rm ga} < E_{\rm gc} < 2(E_{\rm ga} + \Delta E_{\rm v})$ E_{gai} **RL** and no CL $E_{
m gc}$, at $E_{gc} > 2(E_{ga} + \Delta E_v)$ CL

 $\Delta E_{\rm v}$

Core-valence or crossluminescence (CL)

M. Kirm, A. Lushchik, Ch. Lushchik, A.I. Nepomnyashikh, F. Savikhin, Radiat. Meas. <u>33</u> 515 (2001)

Hot luminescence

Hot luminescence of complex molecules in water solution (S.Vavilov's group)

hot luminescence of impuriry centre

Spectra of fast (τ < 2 ns) intraband (IBL) luminescence under irradiation by single nanosecond 300-keV electron pulses of the Kovalchuk-Mesyats-type generator

A. Lushchik, Ch. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil'chenko, Nucl. Instr. and Meth. B <u>250</u> 330 (2006)

F. Savikhin, M. Kerikmäe, E. Feldbach, A. Lushchik, D. Onishchik, D. Rakhimov, I. Tokbergenov, "Phys. stat. sol. (c), <u>2</u> 252 (2005)

Usage of fast IBL (excitation by single electron pulses, 300 keV, 2ns) for the investigation of high-temperature superconductivity in 1-2-3 ceramics

Ch. Lushchik, F. Savikhin, E. Feldbach, I. Meriloo, Sov. J. Low. Temp. Phys. <u>17</u> 687 (1991)

21

Multiplication of electronic excitations (MEE)

Three mechanisms of MEE in dielectrics:(a) electron-hole,(b) excitonic(c, d) solid-state analogue of the Franck-Hertz effect in gases.QY > 1

 σ -STE emission – due to e + h

E. Feldbach, M. Kirm, A. Lushchik, Ch. Lushchik, I. Martinson,

J. Phys: Condens. Matter <u>12</u> 1991 (2000)

One exciting photon of ~32 eV(start from $2s^2$ oxygen shell) is able to form up to 3 *e*-*h* pairs

A. Lushchik, Ch. Lushchik, P. Liblik, A. Maaroos, V.N. Makhov, F. Savikhin, E. Vasil'chenko, J. Lumin. <u>129</u> 1894 (2009)

Reabsorption of IBL by short-lived Frenkel defects

Dielectric ma	terials wit	h low ra	diation r	esistan	$ce(E_g > E_{FD})$
LiH	LiF				8
LiD	NaF	NaCl (2	<i>T</i> > 200 K)		
	KF	KCl	KBr	KI	CaF_2
		RbCl	RbBr	RbI	SrF_2
		CsCl	CsBr	CsI	BaF_2

Creation spectra of Frenkel defects by VUV radiation

In NaCl, the first creation spectrum of *F* centers was measured already in 1964 by Cheslav Lushchik and collaborators at room temperature (i.e. when $E_{\rm FD} < E_{\rm g}$).

<u>e⁰ and e-h</u> mechanisms of Frenkel defect creation – stable F centers and complementary defects (halogen interstitials) are efficiently formed at the recombination of separated electrons and holes. *Ch.B. Lushchik, G.G. Liidya, M.A. Elango, "Electron-hole mechanism of color center creation in ionic crystals," Sov. Phys. Solid State,* **6**, pp. 1789-1794, 1965.

KCl and KBr – efficient creation of stable radiation Frenkel defects at both 10 and 300K

NaCl – highly resistant against radiation at $T \le 80$ K

N(F)~ light sum of (3-4 eV)flash stimulated in the maximum of *F*-absorption band (2.75 eV).

Synchrotron radiation -FINEST beamline with undulator, MAX-III, Lund

28

Three decay channels of electronic excitations (anion excitons or e-h pairs) in a typical wide-gap crystal

Competition between radiative and non-radiative (heat, defect creation) channels of STE decay

Dependence of STE luminescence quenching on high hydrostatic pressure in NaCl

A.Laisaar, V.Scherbakov, A.Kuznetsov, High Peressure Research 3, 78-80 (1990)

30

Concluding Remarks

- Radiation-hardened materials
- Fast and temperature-stable electron or hole intraband luminescence
- IBL under extremely high-dense irradiation?
- An obstacle a pre-breakdown emission due to electron avalanches in the bulk of WGMs
- Materials with additional gaps or at least pseudo-gaps (at certain wave vectors) inside energy bands should be preferred.

Acknowledgements

To all present and former colleagues from the Laboratory of Ionic Crystals

et al.

THANK YOU

33