Measurement report

Commissioning of the new SQUID-System for the GSI lead-CCC, consisting in a Supracon SQUID CP2S blue (serial number S0039), a customized connector box and a Magnicon SQUID-electronics XXf-1.

The connector box sits on top of the rigid cable and distributes the signals from a 10-pin Lemo ERD.2S.310 to a 24-pin Lemo EGG.3B.324 for the Magnicon SQUID-electronics and a 10-pin Lemo FAA.2S.310 for the power supply of the heater of the matching transformer (heater element of SQUID-Control 5.3). A 100 Ω resistor is soldered between Pin 6 ERD.2S.310 and Pin 3 EGG.3B.324 to limit the SQUID-heater current to appr. 60 – 70 mA. The Magnicon XXF-1 provides a heater voltage of 13,6 V and according to the certificate the heater current of the Supracon SQUID CP2S blue should be between 50 – 100 mA. The function of the SQUID-heater, driven by the Magnicon XXF-1 was not tested, yet!

SQUID	Anschluss Platine Kabelfarbe	Buchse Unten Pin	Stecker Verlängerung Pin	Kabel- paar	Bemerkungen	ELEKTRONIK XXF-1	Stecker Adapter Unterseite ERD.2S.310 / Pin	Stecker Typ / Pin	Büchse
(bei SQ5 BIASGND)	BGND schwarz	1	1	TP1	Die Signale BiasGND und Bias müssen für SQUID5 per Brücke zu +SQ und –SQ geführt werden. Für CAL: In	für SQ5 bzw. CAL	1	FAA.2S.310	7
(bei SQ5 BIAS)	BIAS weiß	2	2	TP1	der Dose 4 x 9,1k + 1µF als Filter an den Stecker gelötet! Patrone: Cu-TP von BIAS an Eingang gelegt, entfernen!	für SQ5 bzw CAL	2	FAA.2S.310	8
+MOD	-mod+ rot	3	3	TP2		+Fi	3	EGG.3B.324	16
-MOD	-mod+ rosa	4	4	TP2		-Fi	4	EGG.3B.324	2
+HZ2 (Heizer Trafo)	+hz2- gelb	5	5	TP3		von Option SQ5	5	FAA.25.310	2
+HZ1 (Heizer SQUID)	+hz1 grün	6	6	TP4 TP4	Masse SQUID-Heizer mit auf Pin8, beide Leiter werden zusammen gelötet!	Н	6 100R in Reihe zur Strom- begrenzung an PIN 3 EGG	EGG.3B.324	3
HZGND (Heizer Trafo)	+hz2- gelb	7	7	ТРЗ		von Option SQ5	7	FAA.2S.310	5
GND	Gnd violett	8	8	TP5	Am oberen Ende werden alle 5 Masselitzen zus. an die 8 gelötet, unten nur von TP1	TP1Shield	8	EGG.3B.324	15
+SQ	+sq blau	9	9	TP5		+V	9	EGG.3B.324	14
-SQ	-sq grau	10	10	TP5		-V	10	EGG.3B.324	1

Verkabelung XXF1-CP2Blue Verlängerungsstab

Fig. 1: Pin assignment of the new SQUID-System.

300 K → 4,2 K ↓	EGG 1	EGG 2	EGG 3	EGG 14	EGG 15	EGG 16	FAA 2	FAA 5	FAA 7	FAA 8	GND
EGG 1		00	216R	114R	1,5R	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	00	80	1,5R
EGG 2	00		~~~~	80	80	1,94k	00	80	00	00	00
EGG 3	115R	00		329R	216R+ <mark>100R</mark>	80	∞	88	8	8	216R
EGG 14	4,4R	∞	119R		113R	80	80	00	00	89	113R
EGG 15	0,3R	00	115R+ <mark>100R</mark>	3,9R		80	80	8	8	8	0
EGG 16	8	98R	8	8	80		00	00	00	00	00
FAA 2	00	00	50	8	80	∞		34,6R	~	∞	~
FAA 5	8	∞	8	8	80	~~	29R		~~	00	00
FAA 7	00	00	00	80	∞	∞	∞	∞		36,2k	~
FAA 8	∞	∞	∞	80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80	00	00	36,2K		00
GND	00	00	115R	4,5R	0,1R	8	~	∞	∞	~	

Widerstandswerte der neu gebauten SQUID-Kartusche mit Supracon-SQUID und Adapterstecker für Magniconelektronik / SQ5-Heizoption

Achtung – die Masseverbindung befindet sich im Verteiler und kann bei Bedarf abgelötet werden! CAL: In der Dose 4 x 9.1k + 1µF als Filter an den Stecker gelötet, in der Patrone: Cu-TP von BIAS an Eingang gelegt, entfernen! HZ: PINs 3-15 vom EGG, es sind 100R in reihe geschaltet, um bei 13,5V Heizspannung / 115R Heizwiderstand ca. 60 mA Heizstrom zu erreichen

Werte für 300 K gemessen am 03.11.2013 Werte für 4,2 K gemessen am 06.11.2013

Fig. 2:Measured resistance values of the SQUID-system at 300 K and 4.2 K.

The working point was adjusted with the help of the internal function generator as described in the Magnicon XXf-1 manual.

The critical current of the SQUID is Ic = 22 μ A and the flux feedback coupling is $\Delta I_{MOD} = 10.5 \ \mu A/\Phi_0$ (according to the Certificate by Supracon).

The working point was adjusted by applying a sawtooth shaped signal from the internal generator Phib =10.34 μ A (offset 1/2pp on) to a bias current of I_b = 20.707 μ A and a bias voltage of V_b = 29.48 μ V. The feedback resistance in the Fll-mode was set to Rf@FLL = 9.10 k Ω and the Gain-Bandwidth-Product was set to GBP = 1.04 GHz. These setting are saved in 2013-11-05_11-09-45.stp and could be imported in the SQUID Viewer.

With Rf@FLL = 9.10 k Ω a flux sensitivity of $\Delta U = 92.8 \text{ mV}/\Phi_0$ was measured.

The matching transformer has a turns ratio of 7:1 with a inductance of $L_1 = 23.7 \ \mu\text{H}$ of the primary coil and $L_2 = 0.533 \ \mu\text{H}$ of the secondary coil @ 4.2 K. L_2 @ 4.2 K is a calculated value form the room temperature value of 0.639 μH with a decrease to 83,5% at 4.2 K.

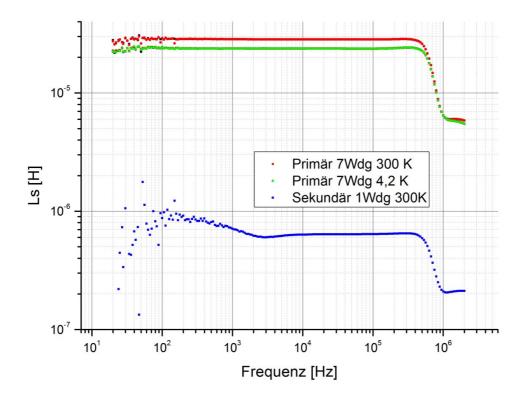


Fig. 3: Frequency-response characteristic of the primary coil (7 turns) at 300K (rot) and 4.2 K (green) and of the secondary coil (1 turn) at 300 K (blue)

The current sensitivity at the primary coil of the matching transformer was measured to be $\Delta I = 62 \text{ nA}/\Phi_0$ by applying a current from a battery driven current source to the primary coil. The input coupling of the SQUID-sensor is $\Delta I_{EK} = 195 \text{ nA}/\Phi_0$. That means the current is transformed by a factor $\Delta I_{EK}/\Delta I = 3.14$.

The voltage noise (Rf@FLL = 9.10 k Ω , GBP = 1.04 GHz) was measured to be $S_V = 2.1 \ \mu V/Hz^{1/2}$ at 10 kHz with the help of a HP35670. This corresponds to a current noise of $S_I = S_V/0.092 \ V/\Phi_0 * 62 \ nA/\Phi_0 = 1.4 \ pA/Hz^{1/2}$ at 10 kHz.

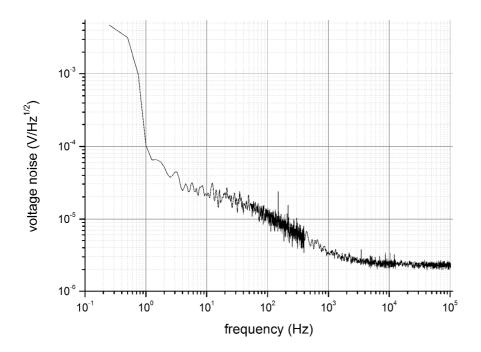


Fig. 4: Voltage noise of the SQUID-system.

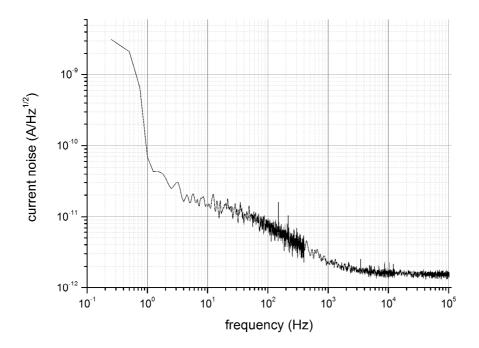


Fig. 5: Current noise of the SQUID-system.

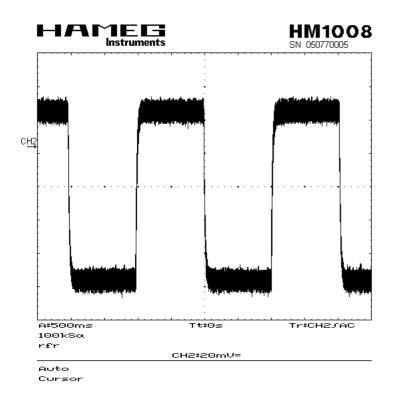


Fig. 6: Step function response of the SQUID-system to a rectangular current signal of I_{pp} = , f = 0,5 Hz, applied to the primary coil of the matching transformer.