

CCC/SQUID beam current monitor at CERN p-bar rings

<u>Miguel Fernandes</u>^{1,2)}, Lars Soby¹⁾, Jocelyn Tan¹⁾, Manfred Wendt¹⁾, Carsten Welsch²⁾

¹⁾CERN, ²⁾Univ. Liverpool

5th August 2013

GSI - Darmstadt

AD/ELENA: low-enery p-bar rings

AD (commissioned 2000)

- Circumference: 182.5 m
- Aperture: 160 mm
- N particles: (5...1)x10^7
- Energy:
- (2753...5.3) MeV
- Momentum:
- (3.6...0.1) GeV/c

ELENA (forecast 2016)

- Circumference: 30.4 m
- 60 mm Aperture:
- N particles: (3...1.8)x10^7
- Energy:
 - (5.3...0.1) MeV Momentum: (100...13.7) MeV/c

AD Cycle

AD beam structure

Flat-Top phases	А	В	С	D	Ideal case (N=5x10 ⁷): 1.3 μ A
β	0.97	0.91	0.30	0.11	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
f _{rev} [MHz]	1.6	1.5	0.50	0.17	
Momentum [GeV/C]	3.57	2.0	0.3	0.1	
Average current [µA]	12	11	4	1.3 - 0.3	
Peak current [µA]	74	140	41	150	Dynamic range: 54 dB
Bunch length [ns]	172	136	104	> 110	

ELENA cycle

Flat-Top phases	Α	В	С	
Beta	0.11	0.04	0.01	
Revolution [MHz]	1.1	0.4	0.1	N
Momentum [GeV/C]	100	35	13.7	e
Average current [µA]	5.2	1.9	0.3	
Peak current [µA]	-	-	15.3	
Bunch length [ns]	-	-	300	

Minimum design current equal to worst case in AD

Motivation for CCC/SQUID

Existing beam current diagnostics at AD

- <u>DCCT</u>:
 - Insufficient resolution for the low current (low β ,N) regime.
- Fast BCTs:
 - Limited to bunched beam phases.
- <u>L-Schottky (from ultra-low noise BCT)</u>:
 - Bunched: time resolution of 20 ms; error of 10%
 - Un-bunched: time resolution of 200 ms; error > 10%
 - Complex calibration process

A more precise measurement ($1\% \leftrightarrow 3nA \odot$) of average beam current (bunched and DC) is needed!

AD: magnetic environment

Field from beam current:

- Aperture: 170 mm
- Distance: 154 mm
- Current: 12 ... 0.3 μA
- B_{θ} field: 15.6 ... 0.39 pT

Assuming:

- Infinitely straight current
- Calculated at mid-point between r_{inner} and r_{outer} of a CCC with dimensions proportional to that of GSI (r_{inner}=69mm and r_{inner}=112mm)

AD: magnetic environment

- Only 2 closest quadrupoles were considered
- Maximum magnet current was considered
- Field obtained in XZ plane at Y=0
- Long. component of quadrupole fields is zero in XZ (this should remain small in other longitudinal planes)

|z|<300 mm \rightarrow $|B_{trans}|$ <20 μ T

ELENA: magnetic environment

Field from beam current:

- Aperture: 60 mm
- Distance: 54 mm
- Current: 5.2 ... 0.3 μA
- B_{θ} field: 19.2 ... 1.05 pT

Assuming:

- Infinitely straight current
- Calculated at mid-point between r_{inner} and r_{outer} of a CCC with dimensions proportional to that of GSI (r_{inner}=69mm and r_{inner}=112mm)

ELENA: magnetic environment

- Only closest quadrupoles and dipole corrector simulations are available
- Maximum magnetic field was considered
- Field obtained in XZ plane at Y=0
- In XZ-plane long. component of quadrupole field is zero (this should remain small in other longitudinal planes)

|z|<300 mm \rightarrow $|B_{trans}|$ <50 μ T

mstadt

Measurements in AD hall *

- Field sources:
 - geomagnetic field
 - DC and AC currents: power lines, busbars ...
 - remnant magnetization in steel components (typical in welded/cold worked parts)
 - electrical machinery (motors, pumps ...)
- Steel structures (scaffolding, rebars in concrete etc.) may both <u>shield</u> or <u>amplify</u> locally the field ($\mu_0 \approx 200$) according to the geometry, material properties, magnetic history ... prediction of stray field map is very hard !
- Measurements done with a 3D fluxgate teslameter (1-1000 μ T).
- Future measurements near CCC locations will be done.

* Courtesy of Marco Buzio (CERN)

Measurements in AD hall *

* Courtesy of Marco Buzio (CERN)

Earth's magnetic field:

• Daily and yearly change < 1%

Measurements inside AD hall:

• General field levels:

 $B_{\text{VERTICAL}} \lesssim 35 \; \mu \text{T} \; B_{\text{HORIZONTAL}} \lesssim 30 \; \mu \text{T}$

- Field at concrete shielding blocks: $|B| \lesssim 10 \ \mu T$
- Scaffolding structure behind kicker spools: 150 μT (70 μT @ 0.2 m)

Specification Summary

CCC/SQUID specifications	AD	ELENA			
Aperture	160 mm	60 mm			
Average current	0.3 12 μΑ	0.4 5 μA			
Dynamic range	54 dB	~50 dB (??)			
Bunch length	~100 ns (shortest)	~300 ns			
Measurement bandwidth	dc 1kHz	dc 1kHz			
Background magnetic field	< 20 50 μT				

- System should provide a measurement every 1ms, so B.W.= 1 kHz
- Measurements will provide a more precise view of the magnetic background
- Estimation of shielding factors:
 - $B_{out} = 50 \mu T$
 - B_{in} = 1% . B_{beam}
 - $B_{in} = A \cdot B_{out}$

Transverse Atten.	AD/ELENA
Max. current	- 170 dB !!
Min. current	- 200 dB !!

Project Plan

2013

- Write and present proposal, including spending profile.

2014

- Develop and manufacture experimental setup.
- Characterize CCC and SQUID devices.
- Design acquisition chain, controls and cabling.
- Integration in AD machine (design scaling for ELENA?).

2015

- Installation in the AD machine and beam tests.

Points for discussion (1)

Magnetic shielding:

- Agreement of simulations with measurements.
- SC materials used: Nb, Pb (can lower Bc be a problem?).
- Manufacturing issues of the CCC.
- Asymmetry of the CCC in longitudinal direction.

Magnetic coupling:

- Material for the magnetic core.
- What kind of noise is dominating in the core (Barkhausen?).
- SC wiring and coupling to SQUID.

Points for discussion (2)

SQUID:

– Can Jena Uni. supply SQUID + electronics?

Cryogenic:

- Possible support/collaboration on cryostat design.
- Heat load and He consumption.
- Cryostat design (insolation layers; feedthroughs).

Operation of the device:

- Effect of mechanical vibrations.
- System stability.
- Calibration procedure.
- Possibility to be used by non-expert operator.

Backup Slides

AD beam parameters

	inj – 3.57	3.57 (FT)	3.57 (can.)	2.0 (deb.)	2.0 (FT)	2.0 (cap)	0.3 (deb)	0.3 (FT)	0.3 (cap)	0.1 (deb)	0.1	(FT)		0.1 - ejection			
Revolution freq. [kHz]		1589.48			1487.70			500.46					174.16				
Revolution period [ns]		629.14			672.18			1998.18					5742.01				
Bunch length [ns]	100400	d.c.	172	420	d.c.	136	859	d.c.	104	370	d.c.	110	110	d.c	110	110	
Bunch spacing [ns]																	
Harmonic	1	-	1	1	-	1	1	-	3	3	-	1	6		1	6	
Total intensity [pbar]		5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	5.0E+07	1.0E+07	1.0E+07	1.0E+07	
Bunch intensity [pbar]		-	5.0E+07	5.0E+07	-	5.0E+07	5.0E+07	-	1.7E+07	1.7E+07	-	5.0E+07	8.3E+06	-	1.0E+07	1.7E+06	
Average current [uA]		12			11			4			1.3				0.3		
Bunch (gauss 4σ) peak current [uA]			74.2	45.6	-	140.8	22.3	-	40.9	17.3	-	174.1	29.0	-	34.8	5.8	
Bunching factor (gauss 4σ)			6.2	4.1	-	12.8	5.6	-	10.2	13.3	-	133.9	22.3	-	26.8	19.3	

L-Schottky current measurement

Magnetic field at magnets

Fields at pole (ELENA):

- Bending dipole: 0.36 T
- Quadrupole: 0.064 T
- Sextupole: 0.0134 T
- Dipole corrector: 0.04 T

Fields at pole (AD):

- Bending dipole: 0. T
- Quadrupole: 0.7 T

ELENA magnetic field

AD magnetic field

