In Part 1 the connexion between the error of a cryo-current comparator and the magnetic
field attenuation in the gap region of its superconducting shield has been treated for the
special but very common case of co-axial gap regions. This paper extends the error
analysis on gaps forming a ring cavity. Such gap elements occur in toroidal cryo-current
comparators as a link between two adjacent co-axial cavities. The results for these com-
parators are:the only field component which may penetrate the gap without attenuation
is the one containing the useful signal about the current linkage of the comparator, All
other field components contribute to the error of the comparator. They are attenuated
according to their degree of symmetry. As the exact way the error functions is known it
will be possible to construct cryo-current comparators with a predictable upper limit to

their dc error.

Field attenuation as the underlying principle of

cryo-current comparators
2. Ring cavity elements

K. Grohmann, H.D. Hahlbohm, D. Hechtfischer, and H. Liibbig

Cryo-current comparators (CCCs) are devices in which the
ratio of two currents flowing in the ratio windings can be
determined with very high accuracy. The characteristic
element of a CCC is a superconducting shield between the
ratio windings and the detector, either a SQUID or a

flux transformer coupled to a SQUID. The shields can be
constructed in a variety of ways.!~* Common to all types
is a gap region which prevents the signal short circuiting. From
a former investigation® (Part 1 of this paper) we know that
the attenuation of magnetic fields in this gap region is the
key to the understanding of the error behaviour of a CCC.
Up to now calculations had been performed for the
cylindric gap region which is a shielding element common
to all known types of CCCs.

An exponential attenuation law has been found in which
the attenuation factor is determined by the degree of field
symmetry and by the geometrical parameters of the gap.
The only field contribution which remains undamped in
the gap region is the field containing the information
about the net current linkage, that is the useful signal of a
CCcC.

It is the intention of the present paper to extend the calcu-
lations to gap regions forming ring cavities. These gap ele-

ments are necessary as a link between the two adjacent co-
axial cavities in toroidal shielding systems of CCCs (Fig. 1).

In the theoretical part the field attenuation in isolated
ring cavities is calculated. In the experimental part the
combination co-axial cavity-ring cavity-co-axial cavity is
investigated using an electrolytic tank. Finally, error
measurements on a CCC consisting of pure ring cavities
in series are reported.

Theory

The arrangement to be discussed is shown in Fig. 2. A
superconducting ring cavity of inner radius 7, and outer
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radius 7, is formed by circular disks, the opening of the
cavities being either at the inner or outer perimeter. In the
space outside the cavities the magnetic field By, is applied
whose penetration into the cavities will be investigated.

The mathematical description we are using is the same as
that used in Part 1. The scalar potential V is related to the
magnetic field B by

B = -VV )
Outside the superconducting walls ¥ obeys the Laplace
equation

v =0 2)
The superconductivity of the walls of the ring cavities is
introduced by postulating ideal diamagnetic behaviour. This

demands the vanishing of all magnetic normal components
at the superconducting surfaces, that is
W= )
on

where 9/9n denotes the derivation with respect to the normal
of the surface.
Solution of the Laplace equation for ring cavities
Using cylindric coordinates and
V(ip, 9.2) = R(p)¥($)Z(z)

we get the following solutions of the Laplace equation,®
which are connected by two separation parameters n and &

Ao + B n=0 (4a)
¢) =

Ay sin(ng + 8,) n>0 (4b)

Cz+D k=0 (5a)
2(2)

Cy sin(kz) + Dy cos(kz) k>0 (5b)

n=0 k=0 (6a)

ESpn + F9pn n>0 k=0 (6b)

R(p
EkI,(kp) + FEK,(kp)

:
Elnp + F
n=z0 k>0 (6¢)

where /,, and K, denote modified Bessel functions of the
first and second kind, respectively and of integer order. (The
occurrence of the modified Bessel-functions in contrast to
Part 1 is demanded here by the special boundary conditions
under consideration.)

The general solution for ¥V is obtained by summing up the
combinations of R, @, and Z for ali possible values n and k.
These values must be determined together with the
coefficients 4 . . . F by means of the boundary conditions.

The symmetry of the external field B determines the
symmetry of the solution and thus the related values of n.
If we allow an axial current / to flow in the region p <7,
we get ADF = —pol/2n from Ampere’s law. The boundary
condition (3) applied to the superconducting planes z = 0
and z = A leads to the result C = C; = 0 and further-
more the restriction that & can only assume the values

k= m? = 1,2,3...
PR »3 )
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The same boundary condition (3) gives for the bottom of
the cavities p = rp(#, = 1y for ring cavity 1 andr, = ry
for ring cavity 2)

Q,I_/=§1_€=0atp=rb ®)
ap op
resulting in
E =0 92)
FY = Epry’ (9b)
I (kry) ,

F¥ = _pk ‘n\bJ n = 01,2... 9¢
" " K (Kro) 0

Taking into account all these results we get the following
complete solution for the potential on the inside of the
cavity
V(p,$,2) = V(n=0,k=0)+ V(n=0,k>0)
+ V(n>0,k=0)

+ V(n>0,k>0) (10)
with
Vin=0k=0) = & (11
piit
V(n >0,k =0)

= > By (o +n oM, sin(nd + 5,) (12)
n=1

Vi =0,k>0) = Z Dnm, cos(”i;liz-) El [10 (’”—;‘—’)
m=1

Lo (mmry k) K. [P (13)
Ko'(mary/n) "\ &
V(n >0,k >0)
= z D, cos(@)An sin(ng + 8y)
m=1n-=1 h
% & [ I(n;zze) _ Ly'(maro/k) K,,(’E’L")]a@
h K, (mnry[h) h

The first potential term V(n = 0, k = 0) is the only one
without any p-dependence, resulting in an azimuthal field
19
p 0¢ 2mp
which provides information about the current linkage in the
inner of the ring cavity independent of the special position
of the exciting current carrying wire.

To calculate the total field within the cavity we have t0
determine all remaining constants in (12)-(14) by adapting
these solutions to the given external potential at the entrance

p =r, of the cavity, which may be developed into a
Fourier series

oo

Vext(res $,2) = Z V,(re, z) sin(ng + 8,) (15)

n=1
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where the ‘modes’ » describe the symmetry of our problem.
We can avoid this troublesome way of finding the total
solution since we are only interested in the p-dependence
of the fields, that is, in the attenuation which the external
fields undergo during intrusion into the cavity.

Because in our cryo-current comparator the measured
quantity is the flux resulting from the azimuthal field, we
only consider here the component

13V
By = ——— 16

¢ ) (16)
The form of the solutions (12)-(14) shows that each mode
n of the external field has an own p-dependence. Therefore,
we define an attenuation 4® for each mode  as the
fraction:
_ Bg’) (within the cavity) an

Bg‘) (entering the cavity)
(It can be shown by a more detailed analysis that the
attenuation of the B, component shows similar results,
whereas the B, component may be neglected).

A®

Attenuation for fields without z-dependence

Equation 12 describes the only solution which is dependent
on p but independent of z. We obtain for the mode n

19y ®™
p 9

If we denote the radius of the entrance to the cavity by
re we obtain from (17)

™y — [P\ 1+ (/o)™
A7 ( ) L F ()™ )

Distinguishing the two cases

By o R (18)

Te

fngcavity 1: 7, =r, r, =1, (202)
tingcavity 2: 7, = r, 1, = Iy (20b)
we get

n+1 2n

AD (o) = (M| Lt (/)" (21a)
re1(p) (p) 1+ ("1/"2)2"
n-1 2n

AP () = (e) 1+ (fpy” (21b)

ry 1 + (rl/rz)z"

The lowest mode 7 = 1 gives the lowest attenuation. Be-
cause r1/r, <1 and r,/p <1 the attenuation in the ring
cavity 1 is always less than 1. But in the ring cavity 2 we
obtain forn = 14§, > 1, that is, a slight increase of the
field into the interior. For the higher modes we find again
a field attenuation 4 rez < 1. For the first five modes with
n2fri = 2andp = r, Table 1is obtained.

We see the ring cavity 2 is less effective in attenuating

magnetic fields. Its main function in cryo-current compara-

’g)rs is to interconnect two adjacent co-axial cavities (see
ig. 1),

Attenuation of z-dependent fields

All terms with combined z and p dependences contain modi-

fied Bessel functions. In all real cryo-current comparators

Wwe have p/h > 10 and therefore it follows x = mmp/h > 30.
hen we may use the asymptotic representations
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Lx) = ¢*(Qnx) "

Knlx) ~ t(;’)

<X

(22a)
(J2h)

which are independent of the order n. Therefore, the
resultant radial dependence of the azimuthal field compo-
nents is the same for all symmetry types, it depends only
on the number m of extremes, the corresponding z-
component has between the superconducting walls at
z=20andz = h

(n,
g om = _ LoV
p 09
~ p-yz[e(mﬂ/h)p+ olma/h) 2ry, v)] (23)

At the bottom of the cavity this results in an attenuation

3
A(m)(p =r) = 2(@ h [c(nm/h)(r‘_. )
0]

~1
+ emm/h) ) (24)

As in real CCCs |r, ~ ry, | > 10k even with m = 1 very
strong attenuations of the order ¢™* =~ 10~ '3 are obtained
for a ring cavity 1 as well as for a ring cavity 2. Therefore
we need not consider z-dependent fields further.

Attenuation by ring cavities followed by a ¢o-axial cavity

In a CCC of the toroidal type (Fig. 1) a ring cavity of height
h is followed by a co-axial cavity of width d. It would be
very tedious to calculate the influence of this new boundary
condition in a mathematically rigorous way. For our purpose,
however, it will suffice to investigate this problem using
certain simplifications.

As we have thin cavities, that is #, d < ry,, we can neglect any
z-dependence in the ring cavity and any p-dependence in

the following co-axial cavity. Furthermore, we know from
our previous analysis that it is only necessary to consider the
first mode of the corresponding potentials.

From this we obtain for the potential within the ring cavity

Vi = D(E)% + F%™")sin ¢ (25)
and for the potential within the following co-axial cavity
(see Part 1)

Ve = Ce#vsing (26)
We aim to determine the ratio of the coefficients £,° and
F® which contains information about the boundary at
p = ry. Using V. B = 0 and neglecting terms of order
hfry, <1, it can be shown that the radial field component
entering the comer region and the z-component leaving it
are connected by

hB, = *dB, (27)

Table 1. Attenuation for different modes ry/r; = 2

Mode Ring cavity 1 Ring cavity 2
1 0.400 1.600
2 0.235 0.941
3 0.123 0.492
4 0.062 0.249
5 0.031 0.125
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The plus and minus sign holds for ring cavity 1 anfl 2, tes-
pectively. From Vx B = 0 it can be shown within the
same degree of approximation that the azimuthal field
component, By, remains unchanged while passing the

corner, that is B§® = By

From these two relations we calculate, by means of the
potentials given above, for a ring cavity 1

F® _ 1 +dh A

-4 = (28a)
EE 1-dhr’
and for a ring cavity 2
0
L. L:ﬂ'l r (28b)
E® 1 + d/h

If the width d of the co-axial cavity is zero, these formulas
give the result (9b), found earlier for ring cavities closed at
p = ry. If the width of the co-axial cavity equals the
height of the ring cavity, we obtain the interesting result,
that the term proportional to p for ring cavity 1 and the
term proportional to 1/p for ring cavity 2 can be neglected,
that is the influence of the cavity’s bottom. For this case,
which normally occurs in a CCC, the attenuation of the
first mode by the two types of ring cavities is simply given

by
Q‘l
p

A }‘c 1(0)
To conclude, it should be mentioned that the same argu-
ments will lead to the conclusion that the influence of the
bottom of a co-axial cavity can be neglected, if it is followed
by a ring cavity of equal width.

il

(29a)

Ale2(p) (29b)

i
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Experiments
Interconnection of co-axial and ring cavities

We have investigated the attenuation of combined co-axial
and ring cavities by an experiment carried out in the electro-
lytic tank. An irrotational magnetic field B was simulated by
the electric field E; the magnetic field behaviour at super-
conducting surfaces B, = 0 being analagous to the electric
field behaviour at insulating surfaces E,, = 0. The gap
region between the isolators was filled with the electrolyte
and an electrical ac field was injected at the entrance of the
gap region by two probes displaced by 180° (thus injecting
an entrance field with symmetry n = 1). On the inside of
the gap region the voltage between two moveable probes at
a distance of 6 mm was measured. The results of these
measurements are shown in Fig, 3. Here the attenuation
factor, as defined in (17), is plotted as a function of the
total length / of the gap region. The dots denote the measure-
ments in the electrolytic tank. As the width of the co-

axial cavity equals the height of the ring cavity the experi-
mental results can be described by the approximation
developed in the previous section. From Fig. 3 it can be
clearly seen that the ring cavity 2 is ineffective for field
attenuation while the ring cavity 1 shows an 1/I? depen-
dence. This attenuation is for the special gap geometry
investigated here quite comparable with the exponential
attenuation of the adjacent short co-axial cavities.
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Cryo-cutrent comparator consisting of pure ring cavities

To demonstrate the attenuation of pure ring cavities the
special cryo-current comparator shown in Fig. 4 was con-
structed (Folder type CCC*). It consists of ring cavity
elements which form the gap region; the widths of the
rudimental co-axial links and the individual ring cavities
being equal. The ratio windings (1 : 1 ratio) surround the
comparators’ shield at such a distance that the single ring
cavity elements could be removed in turn without a change
in the ratio windings’ geometry. Fig. 5 shows the measured
error of this comparator as function of the number of ring
cavity elements. (The error e is defined according to

N111 = N2I'2(1 -+ 6)
as the relative deviation of the current linkages if the out-
put signal of the comparator is zero. It can be measured
by injecting the nominal current I; and J, into the ratio
windings and observing the output signal.) Because any
removal of a ring cavity 1 element weakens the attenua-
tion of the ratio windings’ stray fields the error of the com-
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Fig. 3 Field attenuation A by the interconnection of co-axial
and ring cavities as a function of the length of the gap
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Fig. 4 Folder type comparator consisting of four ring cavities

parator is increased by this. The factor of this increase, as
calculated from the geometry of the shield elements using
(29), is 56, whereas the mean measured value is 60. The
rernoval of a ring cavity 2 element does not effect the error
behaviour as expected from the theory.

Conclusion

The error of a cryo-current comparator depends on the
degree of attenuation which external fields undergo in the
gap region of the superconducting shield. While this has
been proved in Part 1 for a co-axial gap geometry the
studies described in this paper show the same both theo-
retically and experimentally for ring cavities too. Both
cavity elements are sufficient to construct the established
types of cryo-current comparators. Therefore, it is now
possible by choice of the appropriate gap geometry to con-
struct cryo-current comparators with a predictable upper
limit to their dc errors.

The authors wish to thank Mr H.-J. Handke for the con-
struction and measurement on the folder type CCC.
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