Beam Diagnostics for Decelerator HITRAP

Low Energy and Low Current Diagnostic Methods

25.11.09

Michael Witthaus

Hannes Reeg

Peter Forck

Rainer Haseitl

Christiane Andre

Wolfgang Kaufmann

Beam Diagnostics for Decelerator HITRAP

Overview

- HITRAP-facility
- Beam Diagnostic Devices
- Measurement-Results
- Summary and Outlook

HITRAP - Beamline

HITRAP - Beamline

Beam Diagnostics of HITRAP

Objectives of Beam Diagnostics (BD) for HITRAP:

- beam intensity (transmission through beamline)

- beam position and profile

- scintillation sreens, harp systems
- detection of particles and energy
 - Faraday cups, capacitive pick ups

Different beam diagnostic devices are necessary

Challenges:

- low beam intensity (~1E6 ions / pulse; μ A -range)
- low repetition rate (1 pulse in \sim 70 sec., via ESR)
- single beam pulse with length of 3 µs

Faraday Cup

Mechanics

pneumatic drive

Faraday Cup

Mechanics

pneumatic drive

Range: 10nA to 10mA $\,$ Output: 1V f.s. (50 Ω load)

Farady Cup – Data Acquisition

Pneumatic drives are controled by operator at control room (CR).

FC-Measurement-Results

- Hardware was reliably operating \mathbf{O}
- Time-resolved measurements \bigcirc of low currents
- Transmissions can be calculated \bigcirc

Faraday cups are very helpful for beamline setups

Scintillation Screen - Setup

Scintillation Screen - Mechanic

Scintillation screen

Part of the pneumatic drive

Scintillation screen:

- YAG (Y₃Al₅O₁₂)

Yttrium-Aluminium-Garnet

- mono crystalline

Flange diameter 100 mm, CF 100

Good light yield at low energy

Data Acquisition for Scintillation Screens

Digital-Camera on diagnostic chamber

CCD Digital Camera for precise triggering:

- fast scintillation material can be used
- short pulses can be detected

optical fiber for long-distance (> 1km)

FireWire (IEEE1394): up to 5 meters

Digital-Camera with CVS

Scintillation Screens Software - "BeamView"

Scintillation Screens Examples of measurements

False colour pictures show more details

Scintillation Screens Measurements-Results

Separated spots represent different energies

Not detectable with harp systems and ring pick ups

The scintillator screens are very helpful for operating !

G S 1

Harp Systems - Layout

control program on screen at CR

Harps Results – Measured Profiles

Capacitive Pick Up – Function Diagram

Time-of-Flight (TOF) measurement is possible with two pick ups

determination of beam energy

 $u_{noise,RMS} = \sqrt{4kTBR}$

- Charge (current) flows over the pick up plates through R into ground

High impedance High frequency range
$$\omega \gg \omega_{cut}$$
:
 $U_{im}(t) = \frac{1}{\beta c C} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$ $\cup \int_{t}$
for plate $U_{im}(t) = \frac{R}{\beta c} \cdot \frac{A}{2\pi a} \cdot \frac{dI_{beam}}{dt}$ $\cup \int_{t}$
Low impedance $U_{im}(t) = \frac{R}{\beta c} \cdot \frac{A}{2\pi a} \cdot \frac{dI_{beam}}{dt}$ $\cup \int_{t}$
B = bandwidth $\omega_{cut} = \frac{1}{RC}$

High Impedance "Tubular" Pick Up

high-impedance amplifier (1MOhm, 10 MHz Bandwidth)

"Tubular" pick up in the HITRAP beamline

Tubular Pick Up - Measurement-Results

Beamtime February 2009 (Ni²⁸⁺)

Output signal of the tubular pick up should look simular to a FC-signal.

The tubular pick up did not show signal induced by the extracted ESR-beam.

direct irradiation of pick up plate

 Suggestion: reduced-length tubular pick up should help

G 5 1

Yellow trace: 500mV/div.; 5 µs/div.

Blue trace: 100mV/div.; 5 µs/div.

Ring Pick Up – Design Mechanic

pick up at HITRAP

Capacitive Ring Pick Ups - Results

Beamtime October 2008 (Ni²⁸⁺)

Note: 20mV/Div. and 5ns/Div.; beam current was > 1,5 μA

Capacitive Ring Pick Ups - Results

Beamtime October 2008 (Ni²⁸⁺)

Note: red trace: 50mV/div.; 10 ns/div.; blue and green traces: 20mV/div.; 10 ns/div.

Summary and Outlook

- With Faraday-cups we can detect the low energy / intensity beams ! (Calculation of transmissions, time-resolved measurement)
- The scintillator screens are essential for operating ! (detection of position up to 300 nA and < 2 µs beam pulse)</p>
- Pick ups are important for operating, but the sensitivity presently is not high enough (signal/noise ratio to low)
 - March 2010
 - Modify tubular pick up ?
 - Suggestion for ring pick ups: low-noise head amplifiers between pick ups and transmission lines to improve S/N ratio (not yet decided)

Thanks to

Rainer Johänntges Christoph Dorn Pjot Kowina Horst Graf Frank Herfurt Michael Kaiser Winfried Barth Oliver Kester Ludwig Dahl

Thanks for

your attention

