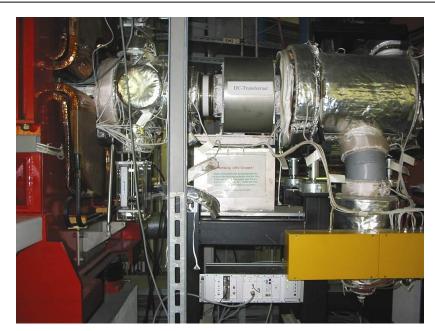
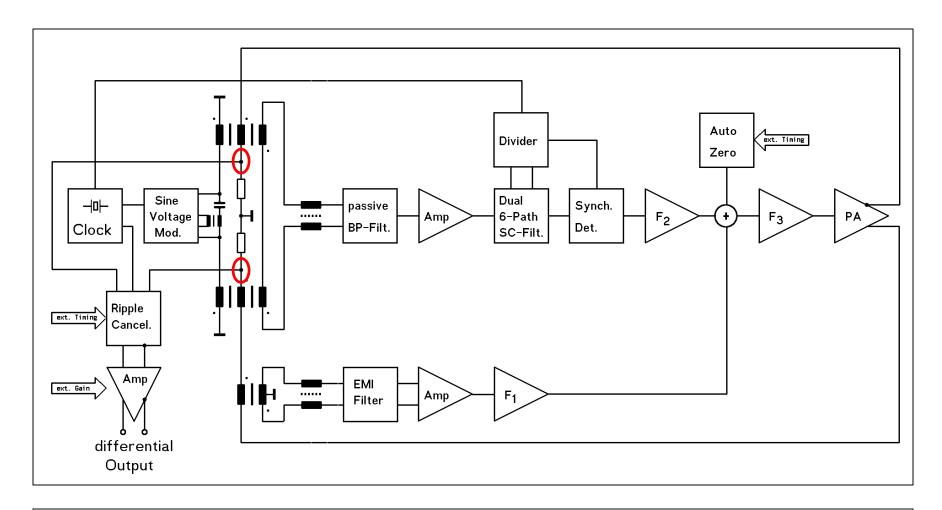
DCCT **GE02DT-ML**, mounted in the **ESR** (GSI development)


• Chamber for UHV, bakeable upto 300°C

Aperture: DN200CF

• Length: 600mm


• Al₂O₃ ceramic gap, resistive coating on inner surface

- Dual-layer Mumetal® magnetic shield
- Additional toroid for fast transformer system added in 2019 (photo from 1993)

- Remote control / ADC placed outside of tunnel
- Locally mounted 19" front end electronics (see bottom)
- DCCT upgraded with V/f-converter output, fixed range
 MHz / 10mA
- Influence of quadrupole's stray field is corrected by Hall probe voltage, fed into DCCT electronics (see cable between quadrupole coil

GSI DCCT block diagram

O => differential voltage proportional to DC beam current / U_{diff} ~ I_{beam}, * 16.66 V/A, dynamic range ≥ 100 dB

GSI DCCT: A magnetic modulator with the usual 3-core scheme

• Dimensions of toroids: 264 x 284 x 10 mm

• Magnetic ribbons: VITROVAC® 6025F, t = 25 µm

• Winding schemes: $N_{loop}=12$, $N_{DC}=16$, $N_{AC}=96$, $N_{mod}=16$

• Main control loop: Current driven, burden resistance 200 Ω

• Control sub-loops: Peak modulation current, Auto-Zero

• Modulation characteristics: Sine voltage, with avalanche capacitor

• Modulation frequency: 987.5 Hz

• Peak excitation field: ~ 20 A/m

• Crossover frequency DC/AC channel: ~ 6 Hz

• Open loop gain at DC: >120 dB

• Open loop - 0 dB crossing frequency: ~ 0.4 Mhz

• Signal transmission, toroids to front end: differential, twisted pair lines

• Cable length, toroids to front end: 2.5 m, limited by cable capacitances

• Min. Shunt impedance @ DC: ≥ 2 kΩ, across toroid stack

GSI DCCT Specifications

• 8 Current Ranges: ± 300 µA to 1 A DC f. s., (1... 3 ... 10 ...)

• Bunched Beam Current Limit: ~ 40 – 100 mA, dependent on bunch frequency / harmonic no.

• **Gain error**: $\leq 0.1 \%$ (for I < 20 mA)

• Linearity error: $\leq 0.1 \%$ (for I < 20 mA)

• 1/f-noise corner frequency: ~ 2 Hz

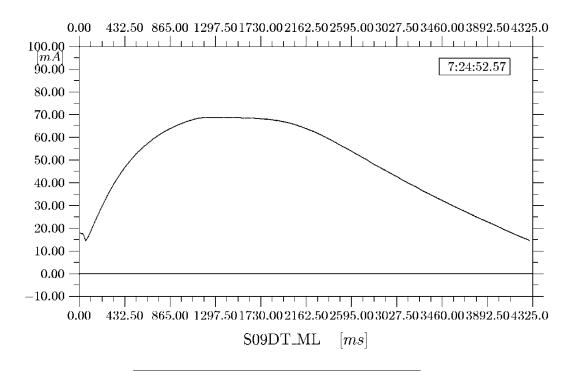
• Offset Temperature coefficient: ~ 5 µA/°C

• Zero error absolute: ± 2.5µA (by automatic zero adjustment, activated whenever a

Faraday-Cup is moved into the beam path

• Error due to external mag. fields: ~ 10 µA max. (stray field from quadrupole on the left)

• Current resolution: ~ 5 μApp @ 20 kHz bandwidth (~1 μArms), S/N=1


• Output bandwidth: DC .. ~ 2 kHz (small signal; new output sample every ~ 506 µs)

• Ripple cancellation: 2 * f_{Mod}-synchroneous sampling at zero-crossing of output signal

• Built-in Voltage-to-frequeny converter : TTL 50Ω output, $f_{max} = 1$ MHz @ 10 mA beam current

Typical operation of GSI/SIS18 DCCT at higher beam intensity

HFS S08 $^{40}AR^{18+}$ 1035.000 MeV/u 3.Dez 99 07:24:42

A beam current cycle in SIS18