

Beam Position Monitor:

Detector Principle, Hardware and Electronics

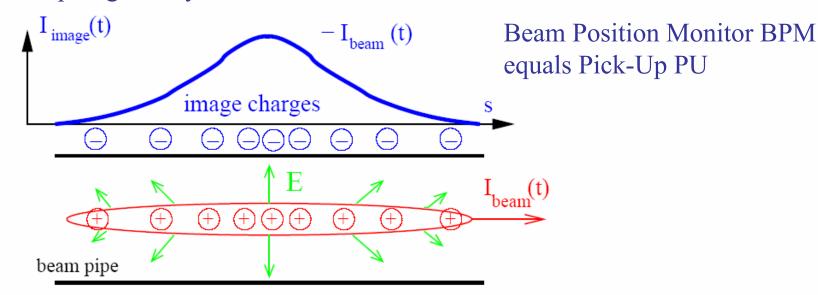
Peter Forck, Piotr Kowina and Dmitry Liakin Gesellschaft für Schwerionenforschung, Darmstadt

Outline:

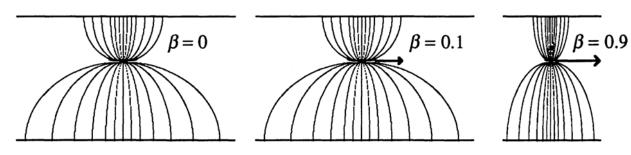
- ➤ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM
- ➤ Other BPM principles: stripline → traveling wave inductive → wall current cavity → resonator for dipole mode
- > Electronics for position evaluation
- > Some examples for position evaluation and other applications
- > Summary

General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.



For relativistic velocities, the electric field is mainly transversal: $E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t)$



Usage of BPMs

A BPM is an non-destructive device

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)

⇒Usage with bunched beams!

It delivers information about:

1. The center of the beam

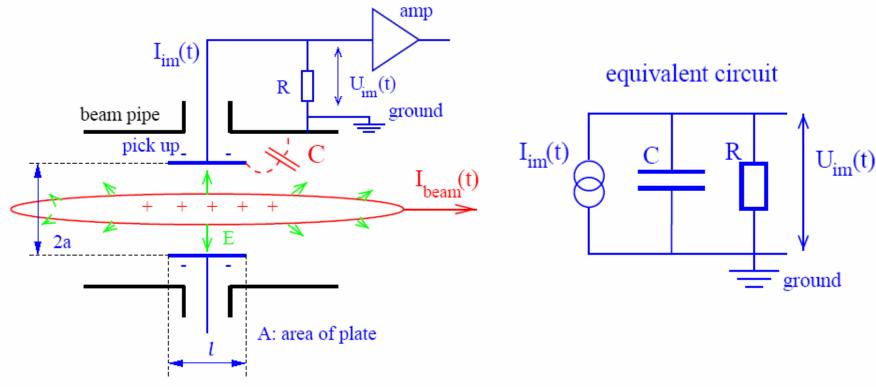
- > Closed orbit
 - i.e. central orbit averaged over a period much longer than a betatron oscillation
- \triangleright Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- \triangleright Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- ➤ Feedback: fast bunch-by-bunch damping → precise (and slow) closed orbit correction

2. Longitudinal bunch shapes

- ➤ Bunch behavior during storage and acceleration
- For proton LINACs: the beam velocity can be determined by two BPMs
- > Relative low current measurement down to 10 nA.

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:



The image current I_{im} at the plate is given by the beam current and geometry:

$$\begin{split} I_{im}(t) &\equiv dQ_{im}/dt = A/2\pi al \cdot dQ_{beam}(t)/dt = A/2\pi al \cdot l/\beta c \cdot dI_{beam}/dt \\ &= A/2\pi a \cdot l/\beta c \cdot i\omega I_{beam}(\omega) \end{split}$$

Using a relation for Fourier transformation: $I_{beam} = I_0 e^{i\omega t} \Rightarrow dI_{beam} dt = i\omega I_{beam}$.

Transfer Impedance for capacitive BPM

At a resistor R the voltage U_{im} from the image current is measured.

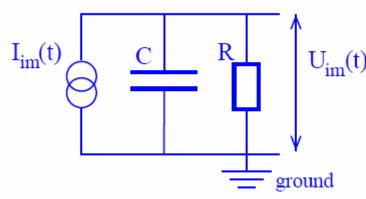
The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam}

in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

- •The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable.
- •The amplifier with input resistor *R*.
- •The beam is a high-impedance current source:

$$\begin{split} U_{im} &= \frac{R}{1 + i\omega RC} \cdot I_{im} \\ &= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \\ &\equiv Z_{t}(\omega, \beta) \cdot I_{beam} \end{split} \qquad \frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC} \end{split}$$



equivalent circuit

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_{t}| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^{2} / \omega_{cut}^{2}}}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

Parameter for shoe-box BPM:

$$C=100 \text{pF}, l=10 \text{cm}, \beta=50\%$$

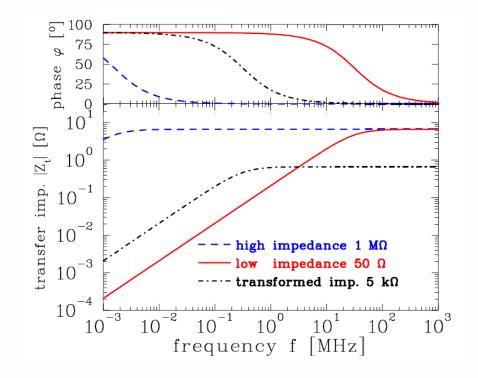
$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$$

for
$$R=1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$

Large signal strength → high impedance

Smooth signal transmission \rightarrow 50 Ω



Compromise $\rightarrow \approx 5 \text{ k}\Omega$ by transformer e.g. N_{prim}/N_{sec} =3:30

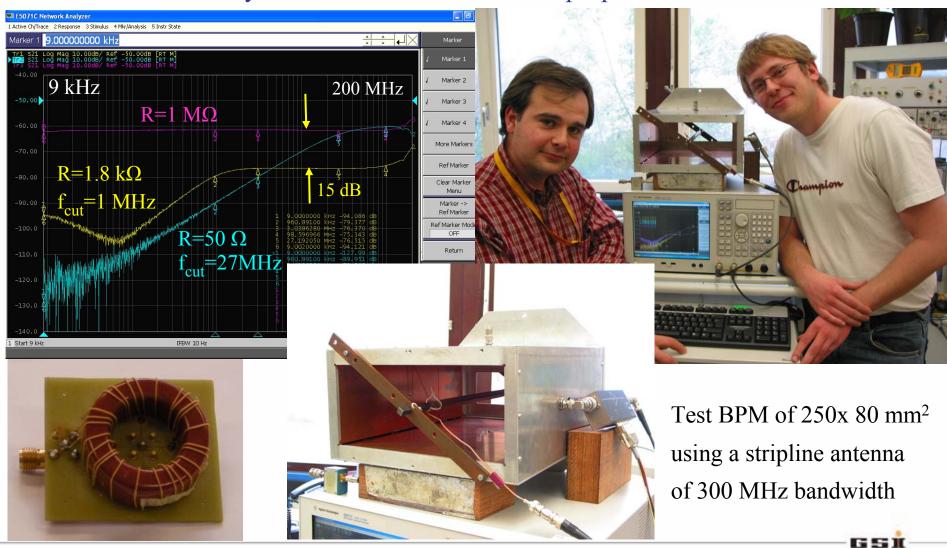
 $\text{Impedance } Z_{prim} = (N_{prim}/N_{sec})^2 \cdot Z_{sec} \text{ voltage } U_{im} = N_{sec}/N_{prim} \cdot U_{prim}$

→ Smooth signal chain, medium cut-off frequency, but lower usable voltage



Transfer Impedance Measurement

With a network analyzer and an antenna the BPM properties can be determined.



Depending on the frequency range *and* termination the signal looks different:

 \triangleright High frequency range $\omega >> \omega_{cut}$:

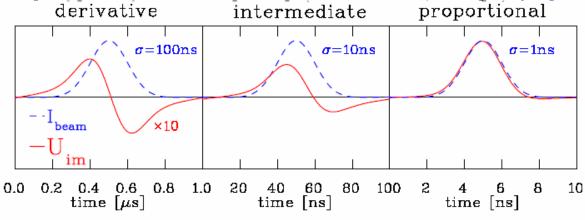
$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1 + i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

- \Rightarrow direct image of the bunch. Signal strength $Z_t \alpha A/C$ i.e. nearly independent on length
- \triangleright Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \alpha$ A, i.e. (nearly) independent on C

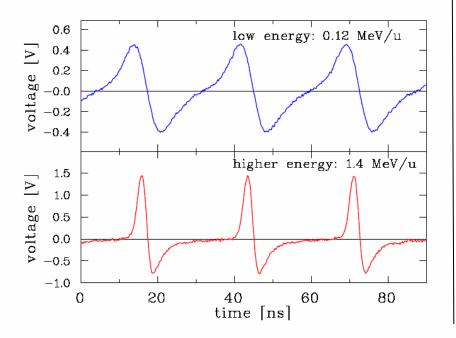
Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >> 1$ ns):



Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron:

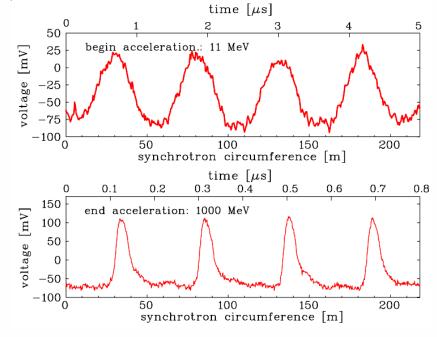
100 MHz $< f_{rf} < 1$ GHz typically $R=50 \Omega$ processing to reach bandwidth $C \approx 5 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 700 \text{ MHz}$ **Example:** 36 MHz GSI ion LINAC



Proton synchtrotron:

1 MHz $< f_{rf} <$ 30 MHz typically $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$ **Example:** non-relativistic GSI synchrotron

 $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$

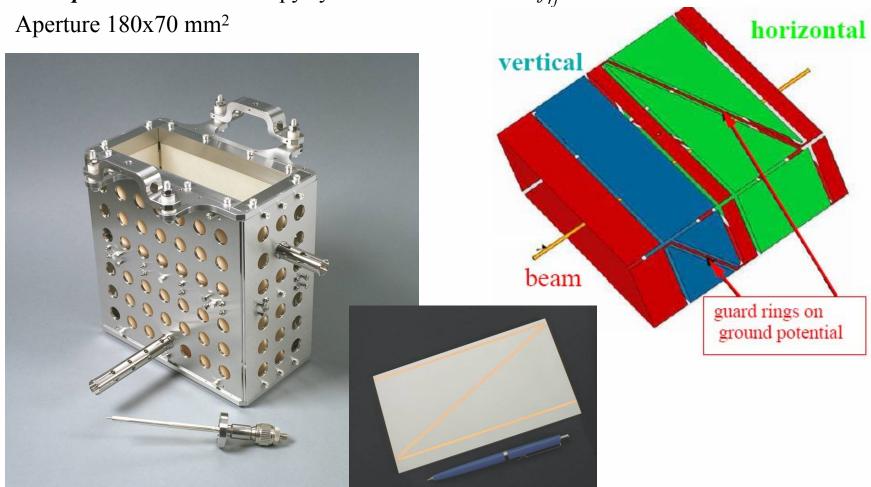


Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Example Shoe-box BPMs

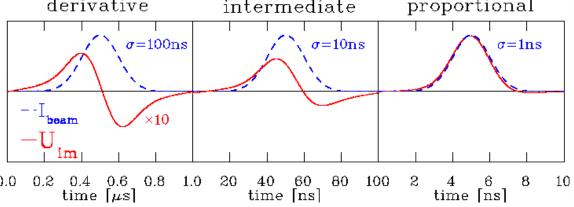
Shoe-box BPMs used at low β proton & ion synchrotron for 1MHz < f_{rf} < 10MHz.

Example: HIT cancer therapy synchrotron 0.8 MHz $< f_{rf} < 5$ MHz

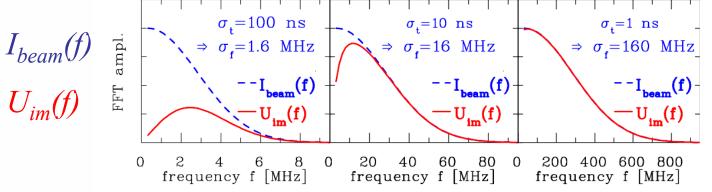


The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{beam}(t)$ having a width of σ_t derivative intermediate proportional



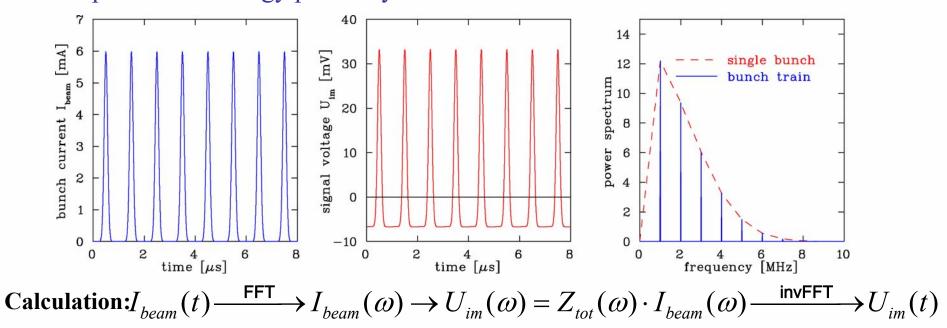
2. FFT of $I_{beam}(t)$ leads to the frequency domain Gaussian $I_{beam}(t)$ with $\sigma_f = (2\pi\sigma_t)^{-1}$



- **3. Multiplication** with $Z_t(f)$ with f_{cut} =32 MHz leads to $U_{im}(f)=Z_t(f)\cdot I_{beam}(f)$
- **4. Inverse FFT** leads to $U_{im}(t)$

Calculation of Signal Shape: Bunch Train

Example for low energy proton synchrotron: Train of bunches with R=1 M Ω



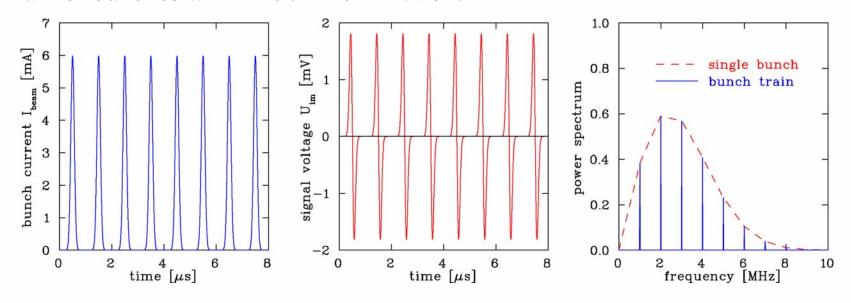
Parameter: R=1 M $\Omega \Rightarrow f_{cut}=2$ kHz, $Z_t=5\Omega$ all buckets filled, no amp

$$C=100$$
pF, $l=10$ cm, $\beta=50\%$, $\sigma_t=100$ ns $\Rightarrow \sigma_l=15$ m

- \triangleright Fourier spectrum is composed of lines separated by acceleration f_{rf}
- ➤ Envelope given by single bunch Fourier transformation
- ➤ Baseline shift due to ac-coupling

Remark: 1 MHz $< f_{rf} <$ 10MHz \Rightarrow Bandwidth \approx 100MHz=10: f_{rf} for broadband observation

Train of bunches with $R=50 \Omega$ termination:

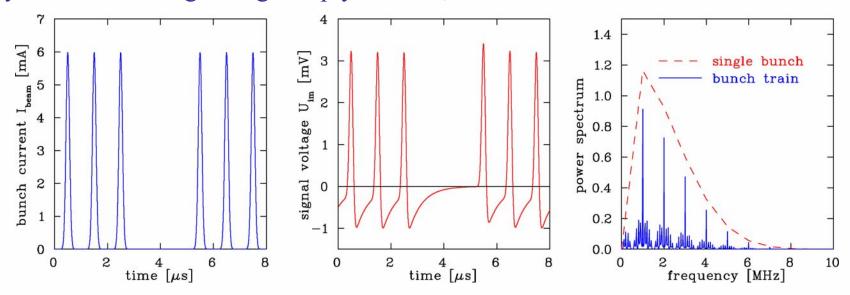


Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled, no amp

C=100pF,
$$l$$
=10cm, β =50%, σ_t =100 ns

- \triangleright Low frequency cut-off due to f_{cut} =32 MHz
- ➤ Differentiated bunches, 15 fold lower amplitude
- ➤ Modified Fourier spectrum with low amplitude value, maximum shift to higher frequencies

Synchrotron during filling: Empty buckets, $R=5 \text{ k}\Omega$ termination:



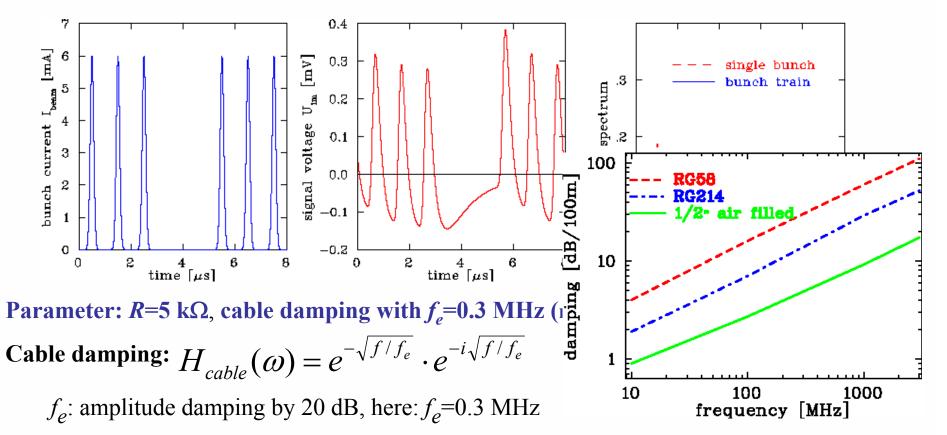
Parameter: $R=5 \text{ k}\Omega \Rightarrow f_{cut}=320 \text{ kHz}$, 2 empty buckets

$$C=100$$
pF, $l=10$ cm, $\beta=50\%$, $\sigma=100$ ns

- ➤ Fourier spectrum is more complex, harmonics are broader
- \triangleright Varying baseline with $\tau \approx (3f_{cut})^{-1} = 1 \text{ }\mu\text{s}$
- ➤ Baseline shift calls for dedicated restoring algorithm for time domain processing.

Calculation of Signal Shape: Bunch Train with Cable Damping

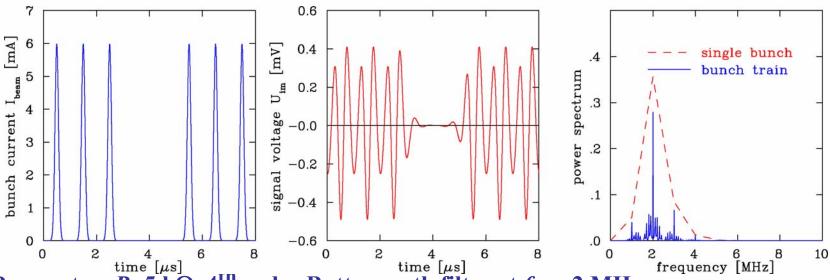
Effect of cable or other electronics:



- ➤ Bunch signal is damped; 10 fold lower amplitude, higher frequencies are damped stronger
- ➤ Bunch signal gets asymmetric, baseline did not reach zero
- \triangleright \Rightarrow 'Good cables' are a precaution for broadband signal transmission

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:



Parameter: R=5 k Ω , 4^{tn} order Butterworth filter at $f_{cut}=2$ MHz

C=100pF, l=10cm, $\beta=50\%$, $\sigma=100$ ns

- ➤ Ringing due to sharp cutoff
- ➤ Other filter types more appropriate

nth order Butterworth filter, math. simple, but **not** well suited:

$$|H_{low}| = \frac{1}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}} \text{ and } |H_{high}| = \frac{(\omega/\omega_{cut})^n}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$$

$$H_{filter} = H_{high} \cdot H_{low}$$

Generally:
$$Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot \dots \cdot Z_{t}(\omega)$$

Remark: For electronics calculation, time domain filters (FIR and IIR) are more appropriate

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass
→most frequent application

'Proximity' effect leads to different voltages at the plates:

$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$

$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$

$$U_{up}$$

$$y \text{ from } U_{\Delta} = U_{up} - U_{down}$$

$$z$$

$$z$$

$$\Delta U < \Sigma U/10$$

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$

S is a geometry dependent, non-linear function, which have to be optimized.

Units: S = [%/mm] and sometimes S = [dB/mm] or k = [mm]

Sometimes the transverse transfer impedance is defined via $U\Delta = Z_{\perp}(\omega) \cdot xI_{beam}$

It can be assumed: $Z_{\perp}(\omega,x)=Z_{t}(\omega)/S(\omega,x)$

Beam Position Monitor:

Detector Principle, Hardware and Electronics

Outline:

- ➤ Signal generation → transfer impedance
- > Consideration for capacitive 'shoe box' = 'linear cut' BPM position sensitivity calculation, crosstalk, realization
- > Consideration for capacitive button BPM
- ➤ Other BPM principles: stripline → traveling wave inductive → wall current cavity → resonator for dipole mode
- > Electronics for position evaluation
- > Some examples for position evaluation and other applications
- > Summary

Shoe-box BPM for Proton or Ion Synchrotron

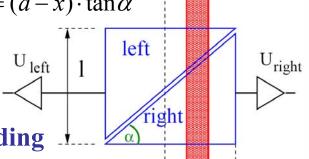
beam

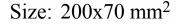
Frequency range: 1 MHz<f_{rf}<10 MHz \Rightarrow bunch-length >> BPM length.

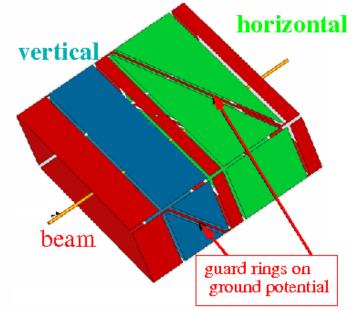
Signal is proportional to actual plate length:

$$l_{\text{right}} = (a+x) \cdot \tan \alpha, \quad l_{\text{left}} = (a-x) \cdot \tan \alpha$$

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}} \qquad \qquad U_{\text{left}}$$







In ideal case: linear reading

$$x = a \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,1$$

$$0,1$$

$$0,2$$

$$0,1$$

$$0,2$$

$$0,1$$

$$0,2$$

$$0,3$$

$$0,2$$

$$0,1$$

$$0,2$$

$$0,3$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,1$$

$$0,2$$

$$0,3$$

$$0,2$$

$$0,3$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,1$$

$$0,2$$

$$0,3$$

$$0,3$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,3$$

$$0,2$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,3$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,4$$

$$0,$$

Shoe-box BPM:

Advantage: Very linear, low frequency dependence

i.e. position sensitivity S is constant

Disadvantage: Large size, complex mechanics

high capacitance

-60

-40

-20

beam position [mm]

Boundary Contribution \Rightarrow FEM Calculation required

Boundary condition by the environment can significantly influence BPM properties

 \Rightarrow real properties have to be calculated numerically by Finite Element Method:

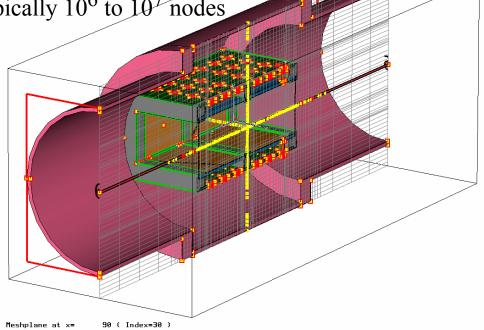
Examples are: CST-Studio (MAFIA), Comsol, HFFS

General idea of FEM calculations:

➤ Volume is divided in 3-dim meshes with typically 10⁶ to 10⁷ nodes

The beam is simulated by a traveling wave on a wire

- ➤ Goal: Field distribution within the meshes
- The Maxwell equations are solved by iterative matrix inversion
- Time domain: Propagation of source terms (here: Gaussian shaped pulse corresponding to 200 MHz bandwidth)
- >Frequency domain: e.g. eigenmodes
- ➤Output: time dependent signal, frequency dependences, S-parameters, field distribution etc.

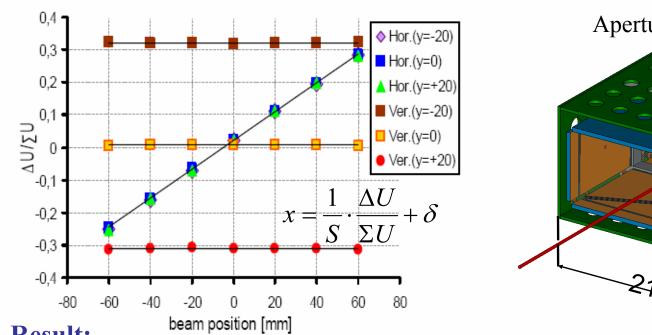


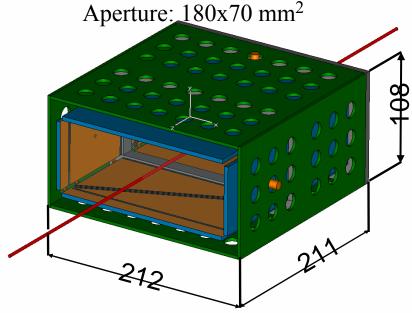
Optimization of Position Sensitivity

Simulation: Gaussian pulse travels on wire on different positions

- → induced voltage calculated on matched output ports
- \rightarrow calculation of $\Delta U/\Sigma U$

Criteria of optimization: linearity, sensitivity, offset reduction, x-y plane independence



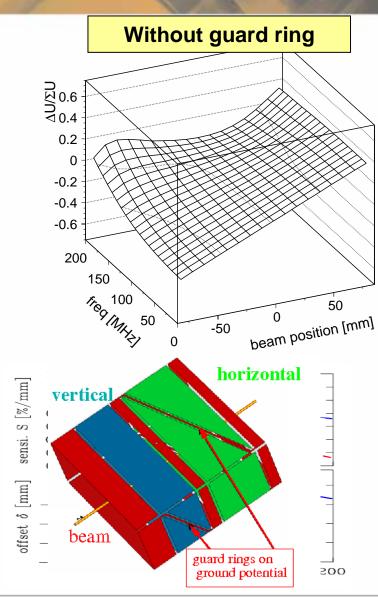


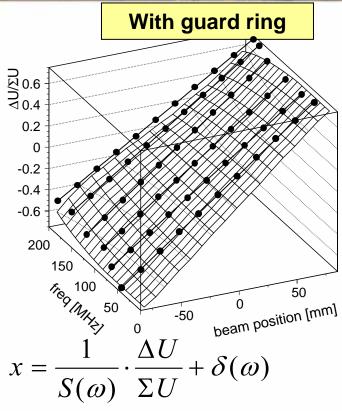
Result:

Nearly perfect: S_x =0.96 %/mm, δ_x =-0.4mm (ideal value S_x =1.1 %/mm, δ =0)

 S_y =2.6 %/mm, δ_y =-0.04mm (ideal value S_y =2.9 %/mm, δ =0) **at 1 MHz**

Frequency Dependence of Position Sensitivity

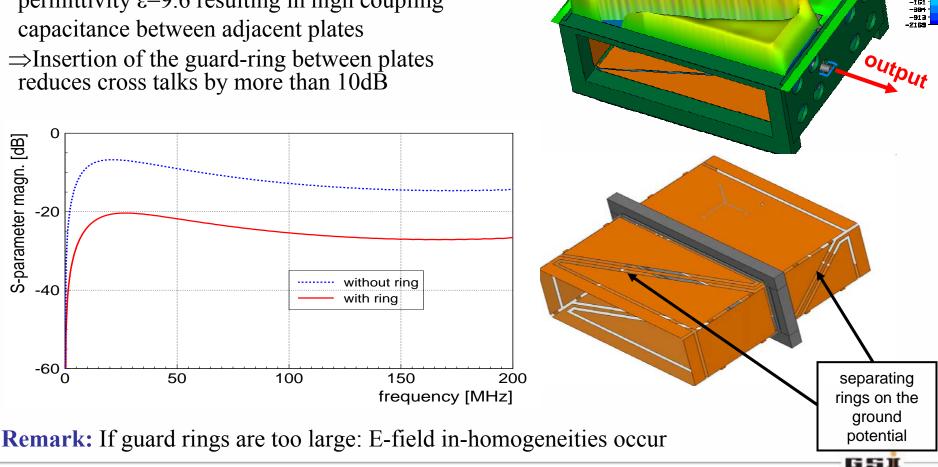




- ➤ Displacement sensitivity is nearly frequency independent only with separating guard rings
- > Sensitivity with separating rings is a factor of two larger as without ring.
- ➤ Capacitive cross talk spoils the sensitivity

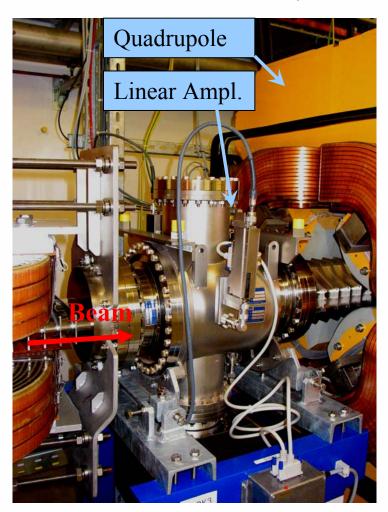
Plate—to-Plate Cross-Talk reduces Sensitivity

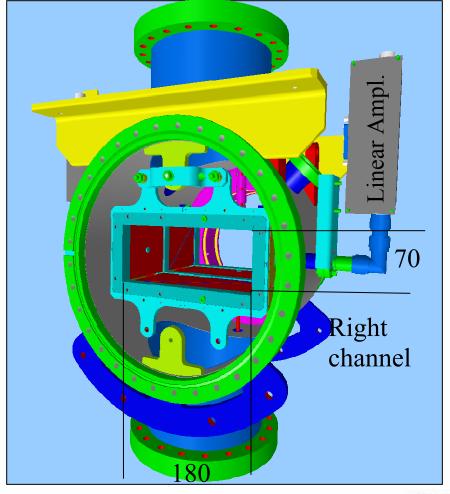
- •Capacitive coubling determines position sensitivity
- •Plate-to-plate cross talk caused by ceramic permittivity ε =9.6 resulting in high coupling capacitance between adjacent plates



Technical Realization of Shoe-Box BPM

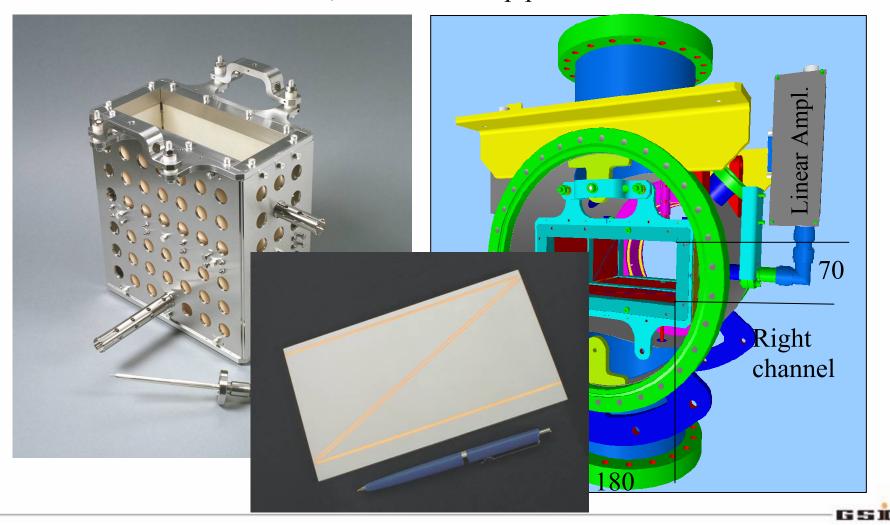
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.





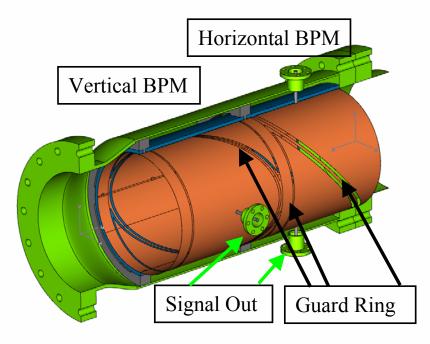
Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



Other Types of diagonal cut BPM

Round type: cut cylinder Same properties as shoe-box:

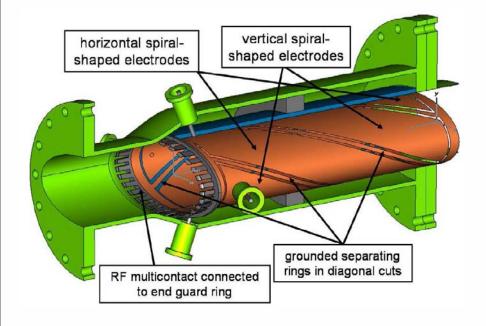


Other realization: Full metal plates

- → No guard rings required
- → but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates
But horizontal-vertical coupling.



Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➤ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM simple electro-static model, low β effect, modification for synch. light source Comparison shoe box button BPM
- Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- > Electronics for position evaluation
- > Some examples for position evaluation and other applications
- > Summary

Button BPM for short Bunches

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

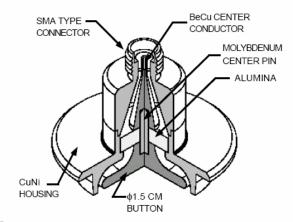
 \rightarrow 50 Ω signal path to prevent reflections

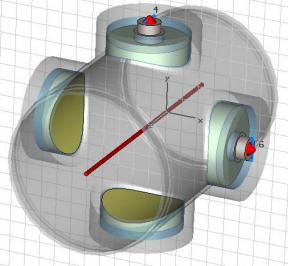
Button BPM with 50
$$\Omega \Rightarrow U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

Example: LHC-type inside cryostat:

 \emptyset 24 mm, half aperture a=25 mm, C=8 pF

$$\Rightarrow f_{cut}$$
=400 MHz, Z_t = 1.3 Ω above f_{cut}





From C. Boccard (CERN)

2-dim Model for Button BPM

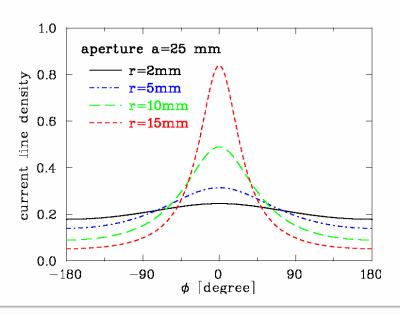
'Proximity effect': larger signal for closer plate

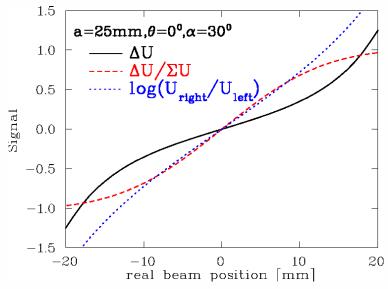
<u>Ideal 2-dim case:</u> Cylindrical pipe → image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

button beam

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$





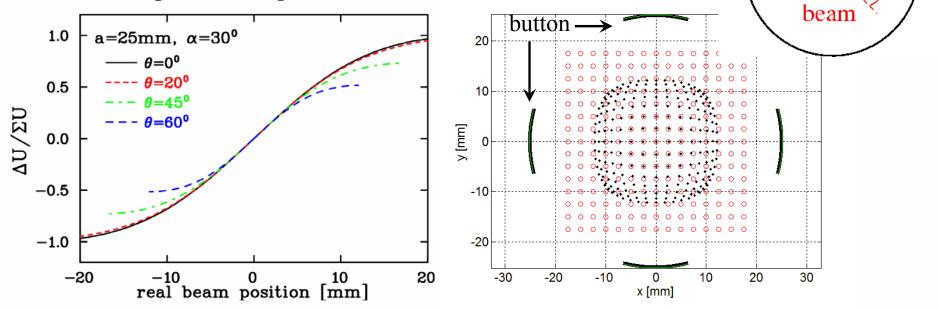
2-dim Model for Button BPM

button

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

Sensitivity: $x=1/S \cdot \Delta U/\Sigma U$ with S [%/mm] or [dB/mm]

For this example: center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$

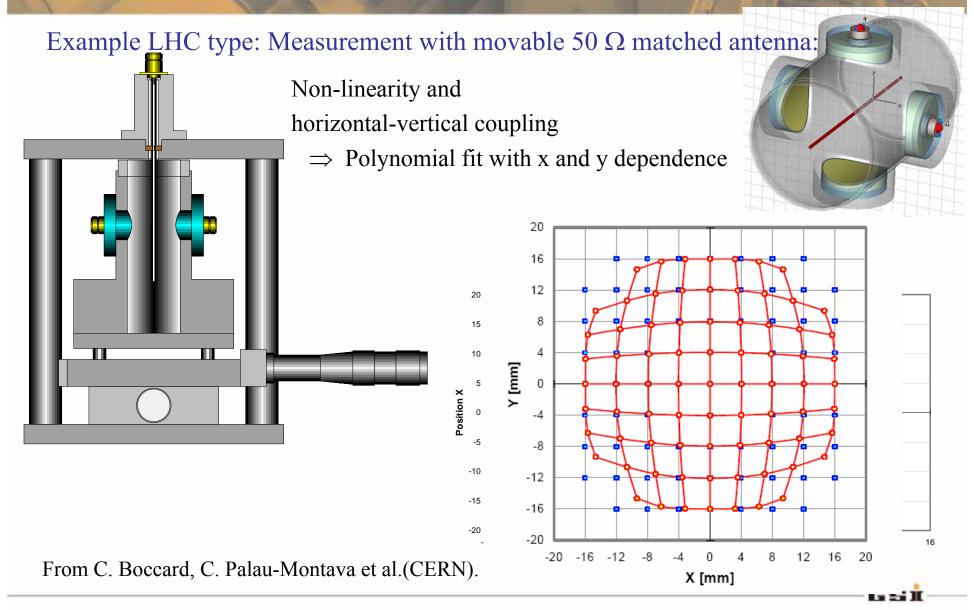


Current density can also be calculated by Laplace equation for Fourier components

$$I_{beam} = \langle I_{beam} \rangle + 2 \langle I_{beam} \rangle \cdot \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) \quad \text{for Gaussian bunches : } A_n = \exp(-n^2 \omega^2 \sigma_t^2 / 2)$$

In addition, frequency dependence can be calculated by this method.

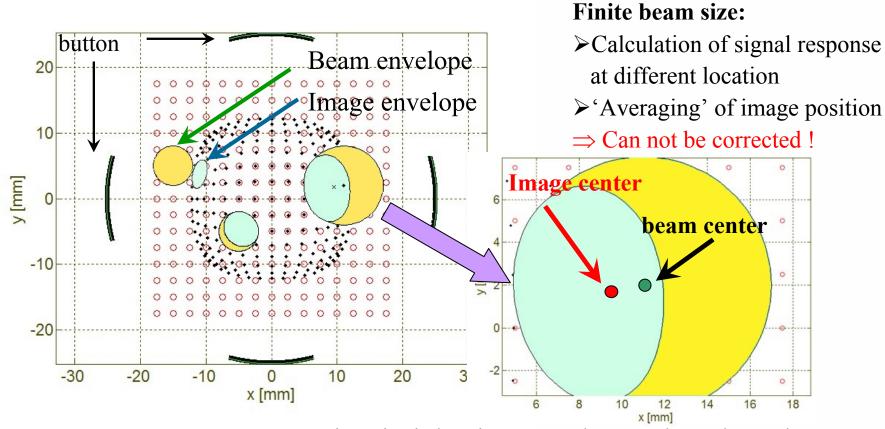
Position Measurement for Button BPM



Estimation of finite Beam Size Effect for Button BPM

Ideal 2-dim model:

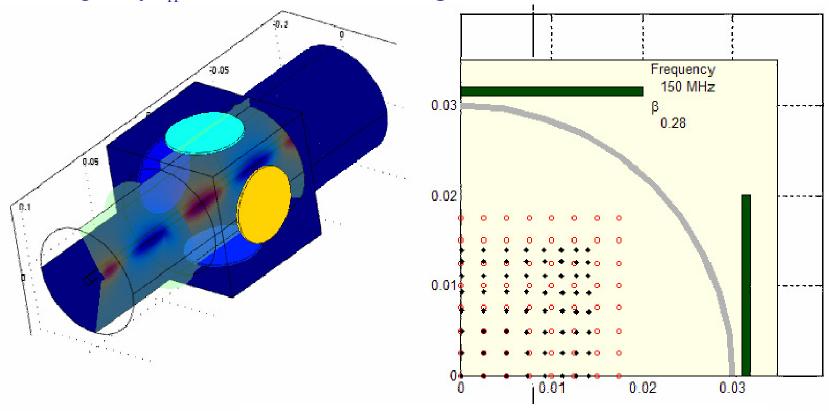
Due to the non-linearity, the beam size enters in the position reading.



Remark: For most LINACs: Linearity is less important, because beam has to be centered → correction as feed-forward for next macro-pulse.

For realistic beam, 3-dim FEM calculations are required.

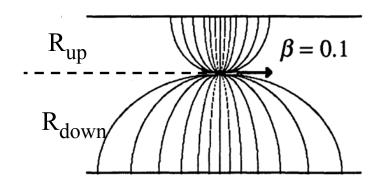
Example: Button BPM at r=3 cm beam-pipe, flat, round \emptyset 4cm frequency f_{rf} =150 MHz, effect for higher harmonics calculated

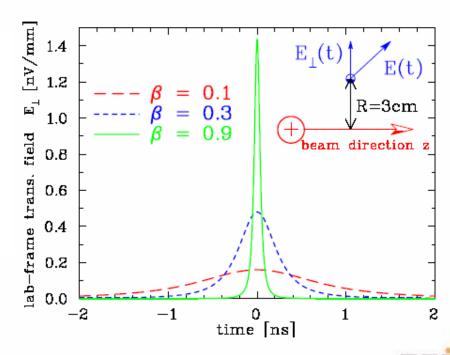


Simple Lorentz transformation of single point-like charge:

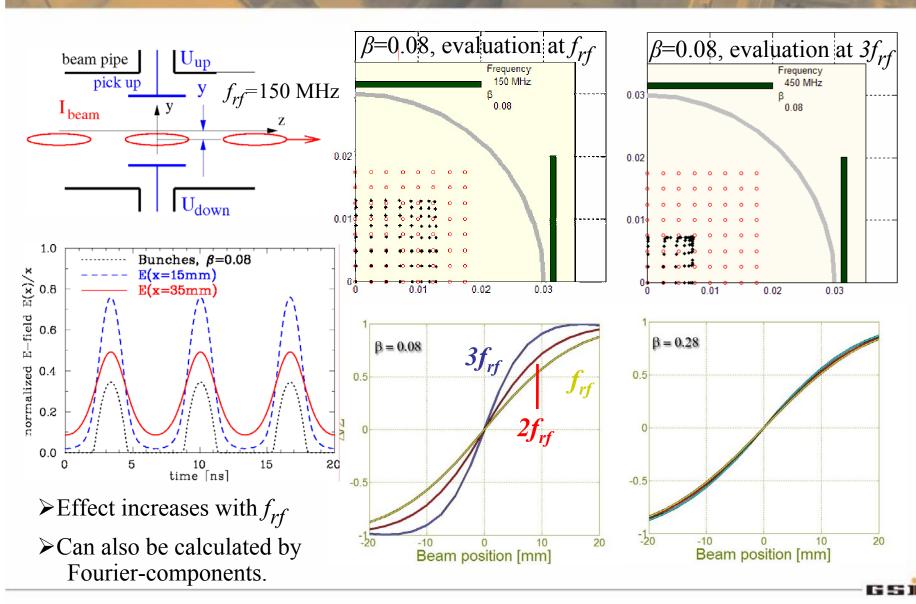
Lorentz boost and transformation of time: $E_{\perp}(t) = \gamma E'(t')$ and $t \to t'$

E-field of a point-like charge:
$$E_{\perp}(t) = \frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma R}{\left[R^2 + (\gamma \beta ct)^2\right]^{3/2}}$$





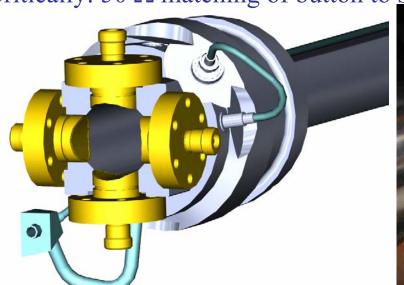
FEM Calculation of low B Effect for p-LINAC

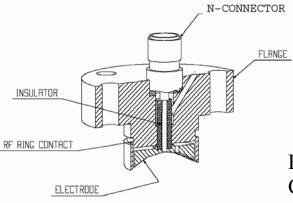


Realization of Button BPM at LHC

Example LHC: \emptyset 24 mm, half aperture a=25 mm, installed inside cryostat

Critically: 50 Ω matching of button to standard feed-through.

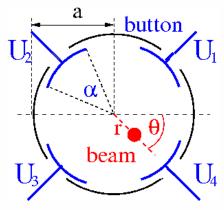




From C. Boccard, C. Palau-Montava et al.(CERN).

The button BPM can be rotated by 45⁰ to avoid exposure by synchrotron light:

Frequently used at boosters for light sources



horizontal:
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

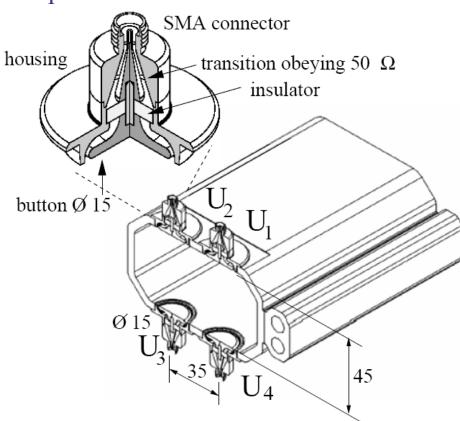
vertical:
$$y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Example: Booster of ALS, Berkeley

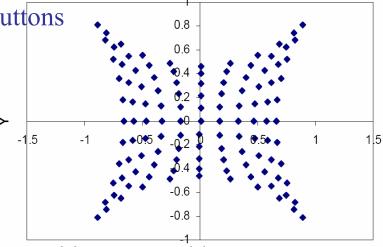
Due to synchrotron radiation, the button insulation might be destroyed

 \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

Optimization: horizontal distance and size of buttons



From S. Varnasseri, SESAME, DIPAC 2005

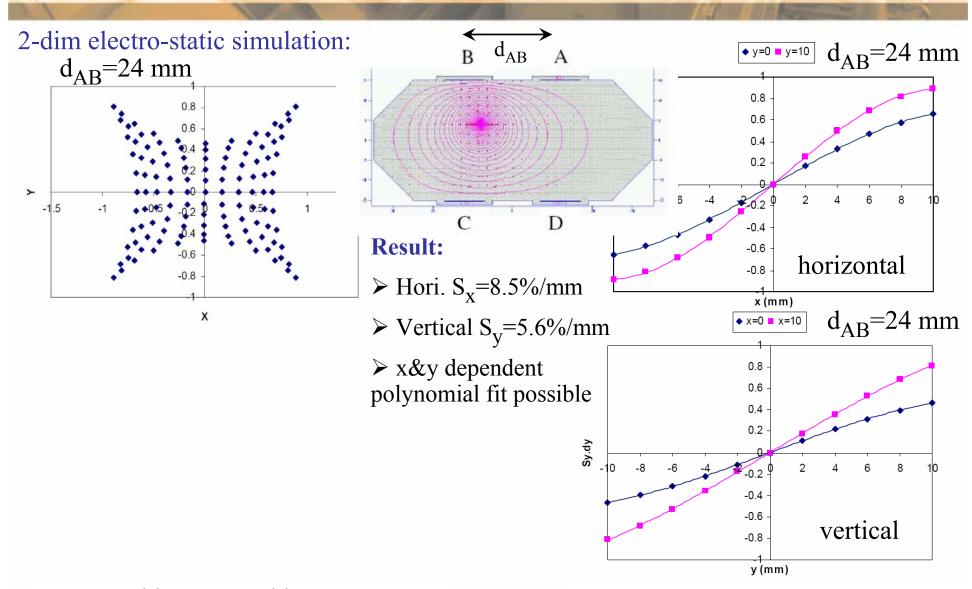


- ➤ Beam position swept with 2 mm steps
- ➤ Non-linear sensitivity and hor.-vert. coupling
- \rightarrow At center $S_x = 8.5\%$ /mm in this case

horizontal:
$$x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

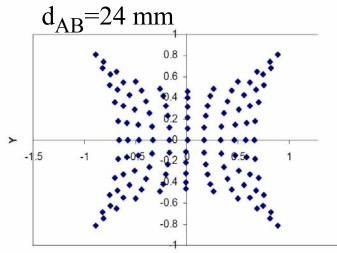
$$\frac{1}{S_x} \cdot \frac{(U_1 + U_2) - (U_2 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

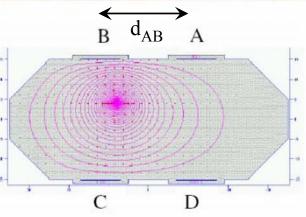
vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$



Beam position swept with 2 mm steps
 P. Forck et al., GSI, February, 2009

From S. Varnasseri, SESAME, DIPAC 2005 Beam Position Monitors: Principle and Realization



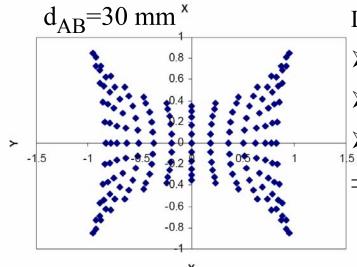


Result:

Distance d_{AB} influences the sensitivity

Larger d_{AB} has the effect:

- ➤ higher sensitivity in x-direction
- ➤ lower sensitivity in y-direction
- ➤ linearity in influenced
- ⇒ Numerical optimization required



Beam position swept with 2 mm steps

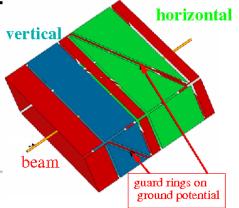
P. Forck et al., GSI, February, 2009

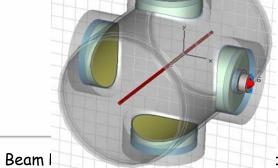
40

From S. Varnasseri, SESAME, DIPAC 2005 – Beam Position Monitors: Principle and Realization

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 MΩ or ≈1 kΩ (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, f_{rf} < 10 MHz	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$





d Realization