Beam Position Monitor:
 Detector Principle, Hardware and Electronics Peter Forck, Piotr Kowina and Dmitry Liakin Gesellschaft für Schwerionenforschung, Darmstadt

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Consideration for capacitive shoe box BPM
$>$ Consideration for capacitive button BPM
$>$ Other BPM principles: stripline \rightarrow traveling wave inductive \rightarrow wall current cavity \rightarrow resonator for dipole mode
$>$ Electronics for position evaluation
$>$ Some examples for position evaluation and other applications
$>$ Summary

General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal: $E_{\perp, l a b}(t)=\gamma \cdot E_{\perp, \text { rest }}(t)$

Usage of BPMs

A BPM is an non-destructive device

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)
\Rightarrow Usage with bunched beams!
It delivers information about:

1. The center of the beam
> Closed orbit
i.e. central orbit averaged over a period much longer than a betatron oscillation
$>$ Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
$>$ Single bunch position \rightarrow determination of parameters like tune, chromaticity, β-function
$>$ Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
$>$ Feedback: fast bunch-by-bunch damping \rightarrow precise (and slow) closed orbit correction

2. Longitudinal bunch shapes

$>$ Bunch behavior during storage and acceleration
$>$ For proton LINACs: the beam velocity can be determined by two BPMs
> Relative low current measurement down to 10 nA .

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:

$$
\begin{aligned}
I_{i m}(t) & \equiv d Q_{i m} / d t=A / 2 \pi a l \cdot d Q_{\text {beam }}(t) / d t=A / 2 \pi a l \cdot l / \beta c \cdot d I_{\text {beam }} / d t \\
& =A / 2 \pi a \cdot 1 / \beta c \cdot i \omega I_{\text {beam }}(\omega)
\end{aligned}
$$

Using a relation for Fourier transformation: $I_{\text {beam }}=I_{0} e^{i \omega t} \Rightarrow d I_{\text {beam }} d t=i \omega I_{\text {beam }}$.

Transfer Impedance for capacitive BPM

At a resistor R the voltage $U_{i m}$ from the image current is measured.
The transfer impedance Z_{t} is the ratio between voltage $U_{i m}$ and beam current $I_{\text {beam }}$
in frequency domain: $U_{i m}(\omega)=R \cdot I_{i m}(\omega)=Z_{t}(\omega, \beta) \cdot I_{\text {beam }}(\omega)$.

Capacitive BPM:

equivalent circuit
-The pick-up capacitance C :
plate \leftrightarrow vacuum-pipe and cable.
-The amplifier with input resistor R.
-The beam is a high-impedance current source:

$$
\begin{aligned}
U_{\text {im }} & =\frac{R}{1+i \omega R C} \cdot I_{i m} \\
& =\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i \omega R C}{1+i \omega R C} \cdot I_{\text {beam }} \\
& \equiv Z_{t}(\omega, \beta) \cdot I_{\text {beam }}
\end{aligned}
$$

$$
\frac{1}{Z}=\frac{1}{R}+i \omega C \Leftrightarrow Z=\frac{R}{1+i \omega R C}
$$

This is a high-pass characteristic with $\omega_{\text {cut }}=1 / R C$:
Amplitude: $\left|Z_{t}(\omega)\right|=\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{\text {cut }}}{\sqrt{1+\omega^{2} / \omega_{c u t}^{2}}}$ Phase: $\varphi(\omega)=\arctan \left(\omega_{c u t} / \omega\right)$

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$
\begin{aligned}
& U_{\text {im }}(\omega)=Z_{t}(\omega) \cdot I_{\text {beam }}(\omega) \\
& \left|Z_{t}\right|=\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{\text {cut }}}{\sqrt{1+\omega^{2} / \omega_{c u t}^{2}}} \\
& \varphi=\arctan \left(\omega_{c u t} / \omega\right)
\end{aligned}
$$

Parameter for shoe-box BPM:

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%
$$

$$
f_{\text {cut }}=\omega / 2 \pi=(2 \pi R C)^{-1}
$$

$$
\text { for } R=50 \Omega \Rightarrow f_{\text {cut }}=32 \mathrm{MHz}
$$

$$
\text { for } R=1 \mathrm{M} \Omega \Rightarrow f_{\text {cut }}=1.6 \mathrm{kHz}
$$

Large signal strength \rightarrow high impedance
Smooth signal transmission $\boldsymbol{\rightarrow 5 0} \Omega$
Compromise $\rightarrow \approx 5 \mathrm{k} \Omega$ by transformer e.g. $N_{\text {prim }} / N_{\text {sec }}=3: 30$
Impedance $Z_{\text {prim }}=\left(N_{\text {prim }} / N_{\text {sec }}\right)^{2} \cdot Z_{\text {sec }}$ voltage $U_{\text {im }}=N_{\text {sec }} / N_{\text {prim }} \cdot U_{\text {prim }}$
\rightarrow Smooth signal chain, medium cut-off frequency, but lower usable voltage

Transfer Impedance Measurement

With a network analyzer and an antenna the BPM properties can be determined.

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range and termination the signal looks different:
$>$ High frequency range $\omega \gg \omega_{\text {cut }}{ }^{\circ}$

$$
Z_{t} \propto \frac{i \omega / \omega_{c u t}}{1+i \omega / \omega_{c u t}} \rightarrow 1 \Rightarrow U_{i m}(t)=\frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2 \pi a} \cdot I_{\text {beam }}(t)
$$

\Rightarrow direct image of the bunch. Signal strength $Z_{t} \alpha A / C$ i.e. nearly independent on length
$>$ Low frequency range $\omega \ll \omega_{\text {cut }}$.
$Z_{t} \propto \frac{i \omega / \omega_{\text {cut }}}{1+i \omega / \omega_{\text {cut }}} \rightarrow i \frac{\omega}{\omega_{\text {cut }}} \Rightarrow U_{\text {im }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot i \omega I_{\text {beam }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot \frac{d I_{\text {beam }}}{d t}$
\Rightarrow derivative of bunch, single strength $\mathrm{Z}_{\mathrm{t}} \alpha \mathrm{A}$, i.e. (nearly) independent on C
Example from synchrotron BPM with 50Ω termination (reality at p-synchrotron : $\sigma \gg 1 \mathrm{~ns}$):

Examples for differentiated \& proportional Shape

Proton LINAC, $\mathrm{e}^{-}-$LINAC\&synchtrotron: $100 \mathrm{MHz}<f_{r f}<1 \mathrm{GHz}$ typically $R=50 \Omega$ processing to reach bandwidth $C \approx 5 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 700 \mathrm{MHz}$ Example: 36 MHz GSI ion LINAC

Proton synchtrotron:
$1 \mathrm{MHz}<f_{r f}<30 \mathrm{MHz}$ typically $R=1 \mathrm{M} \Omega$ for large signal i.e. large Z_{t} $C \approx 100 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 10 \mathrm{kHz}$ Example: non-relativistic GSI synchrotron $f_{r f}: 0.8 \mathrm{MHz} \rightarrow 5 \mathrm{MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Example Shoe-box BPMs

Shoe-box BPMs used at low β proton \& ion synchrotron for $1 \mathrm{MHz}<f_{r f}<10 \mathrm{MHz}$.
Example: HIT cancer therapy synchrotron $0.8 \mathrm{MHz}<f_{r f}<5 \mathrm{MHz}$

Calculation of Signal Shape: Single Bunch

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{\text {beam }}(t)$ having a width of σ_{t}

2. FFT of $I_{\text {beam }}(t)$ leads to the frequency domain Gaussian $I_{\text {beam }}(f)$ with $\sigma_{f}=\left(2 \pi \sigma_{t}\right)^{-1}$
$I_{\text {beam }}(f)$
$U_{\text {im }}(f)$

3. Multiplication with $Z_{t}(f)$ with $f_{\text {cut }}=32 \mathrm{MHz}$ leads to $U_{\text {im }}(f)=Z_{t}(f) \cdot I_{\text {beam }}(f)$
4. Inverse FFT leads to $U_{\text {im }}(t)$

Calculation of Signal Shape: Bunch Train

Example for low energy proton synchrotron: Train of bunches with $\mathrm{R}=1 \mathrm{M} \Omega$

Calculation: $I_{\text {beam }}(t) \xrightarrow{\text { FFT }} I_{\text {beam }}(\omega) \rightarrow U_{\text {im }}(\omega)=Z_{\text {tot }}(\omega) \cdot I_{\text {beam }}(\omega) \xrightarrow{\text { invFFT }} U_{\text {im }}(t)$
Parameter: $R=1 \mathrm{M} \Omega \Rightarrow f_{\text {cut }}=2 \mathrm{kHz}, Z_{t}=5 \Omega$ all buckets filled, no amp

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns} \Rightarrow \sigma_{l}=15 \mathrm{~m}
$$

$>$ Fourier spectrum is composed of lines separated by acceleration $f_{r f}$
$>$ Envelope given by single bunch Fourier transformation
$>$ Baseline shift due to ac-coupling
Remark: $1 \mathrm{MHz}<f_{r f}<10 \mathrm{MHz} \Rightarrow$ Bandwidth $\approx 100 \mathrm{MHz}=10 \cdot f_{r f}$ for broadband observation

Calculation of Signal Shape: Bunch Train

Train of bunches with $\mathrm{R}=50 \Omega$ termination:

Parameter: $R=50 \Omega \Rightarrow f_{\text {cut }}=\mathbf{3 2} \mathrm{MHz}$, all buckets filled, no amp
$C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns}$
$>$ Low frequency cut-off due to $f_{\text {cut }}=32 \mathrm{MHz}$
$>$ Differentiated bunches, 15 fold lower amplitude
$>$ Modified Fourier spectrum with low amplitude value, maximum shift to higher frequencies

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $\mathrm{R}=5 \mathrm{k} \Omega$ termination:

Parameter: $R=5 \mathrm{k} \Omega \Rightarrow f_{\text {cut }}=320 \mathrm{kHz}, 2$ empty buckets
$C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma=100 \mathrm{~ns}$
$>$ Fourier spectrum is more complex, harmonics are broader
$>$ Varying baseline with $\tau \approx\left(3 f_{\text {cut }}\right)^{-1}=1 \mu \mathrm{~s}$
$>$ Baseline shift calls for dedicated restoring algorithm for time domain processing.

Calculation of Signal Shape: Bunch Train with Cable Damping

Effect of cable or other electronics:

$>$ Bunch signal is damped; 10 fold lower amplitude, higher frequencies are damped stronger
$>$ Bunch signal gets asymmetric, baseline did not reach zero
$>\Rightarrow$ 'Good cables' are a precaution for broadband signal transmission

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:

Parameter: $R=5 \mathrm{k} \Omega, 4{ }^{\text {III }}$ order Butterworth filter at $f_{\text {cut }}=\mathbf{2 ~ M H z}$

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma=100 \mathrm{~ns}
$$

$>$ Ringing due to sharp cutoff
$>$ Other filter types more appropriate

$$
\begin{aligned}
& n^{\text {th }} \text { order Butterworth filter, math. simple, but not well suited: } \\
& \left|H_{\text {low }}\right|=\frac{1}{\sqrt{1+\left(\omega / \omega_{\text {cut }}\right)^{2 n}}} \text { and }\left|H_{\text {high }}\right|=\frac{\left(\omega / \omega_{\text {cut }}\right)^{n}}{\sqrt{1+\left(\omega / \omega_{\text {cut }}\right)^{2 n}}} \\
& H_{\text {filter }}=H_{\text {high }} \cdot H_{\text {low }}
\end{aligned}
$$

Generally: $\quad Z_{\text {tot }}(\omega)=H_{\text {cable }}(\omega) \cdot H_{\text {filter }}(\omega) \cdot H_{\text {amp }}(\omega) \cdot \ldots \cdot Z_{t}(\omega)$
Remark: For electronics calculation, time domain filters (FIR and IIR) are more appropriate

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass

\rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

$$
\begin{aligned}
& y=\frac{1}{S_{y}(\omega)} \cdot \frac{U_{u p}-U_{\text {down }}}{U_{u p}+U_{\text {down }}}+\delta_{y}(\omega) \\
& \equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}}+\delta_{y} \\
& x=\frac{1}{S_{x}(\omega)} \cdot \frac{U_{\text {pick up }}}{U_{\text {right }}-U_{\text {left }}}+\delta_{x}(\omega) \\
& U_{\text {right }}+U_{\text {left }}
\end{aligned}
$$

$\boldsymbol{S}(\boldsymbol{\omega}, \boldsymbol{x})$ is called position sensitivity, sometimes the inverse is used $\boldsymbol{k}(\boldsymbol{\omega}, \boldsymbol{x})=\mathbf{1 / S}(\boldsymbol{\omega}, \boldsymbol{x})$
\boldsymbol{S} is a geometry dependent, non-linear function, which have to be optimized.
Units: $\boldsymbol{S}=[\% / \mathrm{mm}]$ and sometimes $\boldsymbol{S}=[\mathrm{dB} / \mathrm{mm}]$ or $\boldsymbol{k}=[\mathrm{mm}]$
Sometimes the transverse transfer impedance is defined via $\boldsymbol{U} \boldsymbol{\Delta}=\boldsymbol{Z}_{\perp}(\boldsymbol{\omega}) \cdot \boldsymbol{x} \boldsymbol{I}_{\text {beam }}$
It can be assumed: $Z_{\perp}(\omega, x)=Z_{t}(\omega) / \boldsymbol{S}(\omega, x)$

Beam Position Monitor:
 Detector Principle, Hardware and Electronics

Outline:
$>$ Signal generation \rightarrow transfer impedance
$>$ Consideration for capacitive 'shoe box' = 'linear cut' BPM position sensitivity calculation, crosstalk, realization
$>$ Consideration for capacitive button BPM
$>$ Other BPM principles: stripline \rightarrow traveling wave
inductive \rightarrow wall current
cavity \rightarrow resonator for dipole mode
$>$ Electronics for position evaluation
$>$ Some examples for position evaluation and other applications
$>$ Summary

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: $1 \mathrm{MHz}<\mathrm{f}_{\mathrm{rf}}<10 \mathrm{MHz} \Rightarrow$ bunch-length \gg BPM length.

Signal is proportional to actual plate length:

$$
\begin{aligned}
& l_{\mathrm{right}}=(a+x) \cdot \tan \alpha \\
& \Rightarrow x=a \cdot \frac{l_{\mathrm{right}}-l_{\mathrm{left}}}{l_{\mathrm{right}}+l_{\mathrm{left}}}
\end{aligned}
$$

In ideal case: linear reading
$x=a \cdot \frac{U_{\text {right }}-U_{\text {left }}}{U_{\text {right }}+U_{\text {left }}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$

beam

Size: 200x70 mm ${ }^{2}$

Shoe-box BPM:
Advantage: Very linear, low frequency dependence i.e. position sensitivity \boldsymbol{S} is constant

Disadvantage: Large size, complex mechanics high capacitance

Boundary Contribution \Rightarrow FEM Calculation required

Boundary condition by the environment can significantly influence BPM properties
\Rightarrow real properties have to be calculated numerically by Finite Element Method:
Examples are: CST-Studio (MAFIA), Comsol, HFFS

General idea of FEM calculations:

$>$ Volume is divided in 3-dim meshes with typically 10^{6} to 10^{7} nodes
$>$ The beam is simulated by a traveling wave on a wire
$>$ Goal: Field distribution within the meshes
> The Maxwell equations are solved by iterative matrix inversion
$>$ Time domain: Propagation of source terms (here: Gaussian shaped pulse corresponding to 200 MHz bandwidth)
$>$ Frequency domain: e.g. eigenmodes

$>$ Output: time dependent signal, frequency dependences, S-parameters, field distribution etc.

Optimization of Position Sensitivity

Simulation: Gaussian pulse travels on wire on different positions
\rightarrow induced voltage calculated on matched output ports
\rightarrow calculation of $\Delta \mathrm{U} / \Sigma \mathrm{U}$
Criteria of optimization: linearity, sensitivity, offset reduction, x-y plane independence

Result:

Nearly perfect: $S_{x}=0.96 \% / \mathrm{mm}, \delta_{x}=-0.4 \mathrm{~mm}$ (ideal value $S_{x}=1.1 \% / \mathrm{mm}, \delta=0$)

$$
\left.S_{y}=2.6 \% / \mathrm{mm}, \quad \delta_{y}=-0.04 \mathrm{~mm} \text { (ideal value } S_{y}=2.9 \% / \mathrm{mm}, \delta=0\right) \text { at } \mathbf{1} \mathbf{~ M H z}
$$

Frequency Dependence of Position Sensitivity

$>$ Displacement sensitivity is nearly frequency independent only with separating guard rings
$>$ Sensitivity with separating rings is a factor of two larger as without ring.
> Capacitive cross talk spoils the sensitivity

Plate-to-Plate Cross-Talk reduces Sensitivity

-Capacitive coubling determines position sensitivity
-Plate-to-plate cross talk caused by ceramic permittivity $\varepsilon=9.6$ resulting in high coupling capacitance between adjacent plates \Rightarrow Insertion of the guard-ring between plates reduces cross talks by more than 10 dB

Remark: If guard rings are too large: E-field in-homogeneities occur

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: 180x70 mm^{2}, standard beam pipe diameter: 200 mm .

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: $180 \times 70 \mathrm{~mm}^{2}$, standard beam pipe diameter: 200 mm .

Other Types of diagonal cut BPM

Round type: cut cylinder
Same properties as shoe-box:

Other realization: Full metal plates
\rightarrow No guard rings required
\rightarrow but mechanical alignment more difficult

Wounded strips:
Same distance from beam and capacitance for all plates
But horizontal-vertical coupling.

Beam Position Monitor:
 Detector Principle, Hardware and Electronics

Outline:
$>$ Signal generation \rightarrow transfer impedance
> Consideration for capacitive shoe box BPM
> Consideration for capacitive button BPM
simple electro-static model, low β effect, modification for synch. light source Comparison shoe box button BPM
$>$ Other BPM principles: stripline \rightarrow traveling wave, inductive \rightarrow wall current, cavity \rightarrow resonator for dipole mode
$>$ Electronics for position evaluation
$>$ Some examples for position evaluation and other applications
$>$ Summary

Button BPM for short Bunches

LINACs, e-synchrotrons: $100 \mathrm{MHz}<f_{r f}<3 \mathrm{GHz} \rightarrow$ bunch length \approx BPM length $\rightarrow 50 \Omega$ signal path to prevent reflections
Button BPM with $50 \Omega \Rightarrow U_{i m}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot \frac{d I_{\text {beam }}}{d t}$
Example: LHC-type inside cryostat: $\varnothing 24 \mathrm{~mm}$, half aperture $a=25 \mathrm{~mm}, C=8 \mathrm{pF}$
$\Rightarrow f_{\text {cut }}=400 \mathrm{MHz}, Z_{t}=1.3 \Omega$ above $f_{\text {cut }}$

From C. Boccard (CERN)

EEin

2-dim Model for Button BPM

'Proximity effect': larger signal for closer plate

Ideal 2-dim case: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$
j_{i m}(\phi)=\frac{I_{\text {beam }}}{2 \pi a} \cdot\left(\frac{a^{2}-r^{2}}{a^{2}+r^{2}-2 a r \cdot \cos (\phi-\theta)}\right)
$$

Image current: Integration of finite BPM size: $I_{i m}=a \cdot \int_{-\alpha / 2}^{\alpha / 2} j_{i m}(\phi) d \phi$

2-dim Model for Button BPM

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:
Sensitivity: $x=1 / S \cdot \Delta U / \Sigma U$ with $S[\% / \mathrm{mm}]$ or $[\mathrm{dB} / \mathrm{mm}]$ For this example: center part $S=7.4 \% / \mathrm{mm} \Leftrightarrow k=1 / S=14 \mathrm{~mm}$

Current density can also be calculated by Laplace equation for Fourier components
$I_{\text {beam }}=\left\langle I_{\text {beam }}\right\rangle+2\left\langle I_{\text {beam }}\right\rangle \cdot \sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t\right) \quad$ for Gaussian bunches : $A_{n}=\exp \left(-n^{2} \omega^{2} \sigma_{t}^{2} / 2\right)$
In addition, frequency dependence can be calculated by this method.
P. Forck et al., GSI, February, 2009

Position Measurement for Button BPM

Example LHC type: Measurement with movable 50Ω matched antenna:

From C. Boccard, C. Palau-Montava et al.(CERN).

Estimation of finite Beam Size Effect for Button BPM

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Finite beam size:

Remark: For most LINACs: Linearity is less important, because beam has to be centered \rightarrow correction as feed-forward for next macro-pulse.

FEM Calculation for Button BPM simple Test Case

For realistic beam, 3-dim FEM calculations are required.

- Example: Button BPM at $\mathrm{r}=3 \mathrm{~cm}$ beam-pipe, flat, round $\varnothing 4 \mathrm{~cm}$
frequency $f_{r f}=150 \mathrm{MHz}$, effect for higher harmonics calculated

Nearly same result as ideal case!

Low Velocity Effect: General Consideration

Simple Lorentz transformation of single point-like charge:
Lorentz boost and transformation of time: $\quad E_{\perp}(t)=\gamma E^{\prime}\left(t^{\prime}\right)$ and $t \rightarrow t^{\prime}$

$$
\text { E-field of a point-like charge: } \quad E_{\perp}(t)=\frac{e}{4 \pi \varepsilon_{0}} \cdot \frac{\gamma R}{\left[R^{2}+(\gamma \beta c t)^{2}\right]^{3 / 2}}
$$

FEM Calculation of low β Effect for p-LINAC

Realization of Button BPM at LHC

Example LHC: $\varnothing 24 \mathrm{~mm}$, half aperture $a=25 \mathrm{~mm}$, installed inside cryostat Critically: 50Ω matching of button to standard feed-through.

From C. Boccard,
C. Palau-Montava et al.(CERN).

Button BPM at Synchrotron Light Sources

The button BPM can be rotated by 45^{0}
to avoid exposure by synchrotron light:
Frequently used at boosters for light sources

horizontal : $x=\frac{1}{S} \cdot \frac{\left(U_{1}+U_{4}\right)-\left(U_{2}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$
vertical: $\quad y=\frac{1}{S} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$

Example: Booster of ALS, Berkeley

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed
\Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

From S. Varnasseri, SESAME, DIPAC 2005

$>$ Beam position swept with 2 mm steps
$>$ Non-linear sensitivity and hor.-vert. coupling
\Rightarrow At center $S_{x}=8.5 \% / \mathrm{mm}$ in this case
horizontal : $x=\frac{1}{S_{x}} \cdot \frac{\left(U_{2}+U_{4}\right)-\left(U_{1}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$
vertical: $y=\frac{1}{S_{y}} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$
Beam Position Monitors: Principle and Realization

Button BPM at Synchrotron Light Sources

$>x \& y$ dependent polynomial fit possible

- Beam position swept with 2 mm steps
P. Forck et al., GSI, February, 2009

From S. Varnasseri, SESAME, DIPAC 2005
Beam Position Monitors: Principle and Realization

Button BPM at Synchrotron Light Sources

2-dim electro-static simulation:

Result:
Distance d_{AB} influences the sensitivity

Larger d_{AB} has the effect:
$>$ higher sensitivity in x -direction
$>$ lower sensitivity in y-direction
$>$ linearity in influenced
\Rightarrow Numerical optimization required

- Beam position swept with 2 mm steps \qquad From S. Varnasseri, SESAME, DIPAC 2005
P. Forck et al., GSI, February, 2009

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	$\varnothing 1$ to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	$1 \mathrm{M} \Omega$ or $\approx 1 \mathrm{k} \Omega$ (transformer)	50Ω
Cutoff frequency (typical)	$0.01 \ldots 10 \mathrm{MHz}(C=30 \ldots 100 \mathrm{pF})$	$0.3 \ldots 1 \mathrm{GHz}(C=2 \ldots 10 \mathrm{pF})$
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, $f_{r f}<10 \mathrm{MHz}$	All electron acc., proton Linacs, $f_{r f}>100 \mathrm{MHz}$

