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Abstract

For the characterization of components, systems and signals in the radiofre-

quency (RF) and microwave ranges, several dedicated instruments are in use.

In this article the fundamentals of the RF signal techniques are discussed. The

key element in these front ends is the Schottky diode which can be used either

as a RF mixer or as a single sampler. The spectrum analyser has become an

absolutely indispensable tool for RF signal analysis. Here the front end is the

RF mixer as the RF section of modern spectrum analyses has a rather complex

architecture. The reasons for this complexity and certain working principles

as well as limitations are discussed. In addition, an overview of the develop-

ment of scalar and vector signal analysers is given. For the determination of

the noise temperature of a one-port and the noise figure of a two-port, basic

concepts and relations are shown as well as a brief discussion of commonly

used noise-measurement techniques. In a further part of this article the oper-

ating principles of network analysers are shown. A distinction can be made

between scalar and vector network analysers and their methods of measuring

the transmission or reflection coefficients are explained. As digital signal pro-

cessing has become cheap and easily available over the last 30 years, these

instruments have become extremely versatile and powerful. Fourier transfor-

mation permits time-domain measurements and allows the removal of unde-

sired parts of the signal trace in the time domain by gating. Network analysers

require sophisticated calibration procedures, which are now indispensable for

many measurement applications. Non-linear network analysis completes tests

of most characteristic amplifier features. The Smith chart is a very valuable

and important tool that facilitates interpretation of S-parameter measurements.

The last part of this article gives a brief overview of how to use the chart. Its

definition as well as an introduction on how to navigate inside the chart are

illustrated. Useful examples show the broad possibilities for use of the chart

in a variety of applications. This article is a compilation of previous CAS pro-

ceedings where information being in the scope of the intermediate-level RF

course was extracted.

1 INTRODUCTION TO SIGNAL RECEIVING TECHNIQUES

In the early days of radiofrequency (RF) engineering the available instrumentation for measurements

was rather limited. Besides elements acting on the heat developed by RF power (bimetal contacts and

resistors with very high temperature coefficient) only point/contact diodes, and to some extent vacuum

tubes, were available as signal detectors. For several decades the slotted measurement line, see Sec-

tion 10.1, was the most used instrument for measuring impedances and complex reflection coefficients.

Around 1960 the tedious work with such coaxial and waveguide measurement lines became considerably

simplified with the availability of the vector network analyser. At the same time the first sampling oscil-

loscopes with 1 GHz bandwidth arrived on the market. This was possible due to progress in solid-state

(semiconductor) technology and advances in microwave elements (microstrip lines). Reliable, stable and

easily controllable microwave sources are the backbone of spectrum and network analysers as well as



Table 1: Overview of dB key values and their conversion into power and voltage ratios

Power ratio Voltage ratio

−20 dB 0.01 0.1

−10 dB 0.1 0.32

−3 dB 0.50 0.71

−1 dB 0.74 0.89

0 dB 1 1

1 dB 1.26 1.12

3 dB 2.00 1.41

10 dB 10 3.16

20 dB 100 10

n · 10 dB 10n 10n/2

sensitive (low-noise) receivers. The following sections will concentrate on signal receiving devices such

as spectrum analysers. An overview of network analysis will be given later on in Section 7.

2 BASIC DEFINITIONS, ELEMENTS AND CONCEPTS

Before discussing several measurement devices, a brief overview of the most important components in

such devices and some basic concepts are presented.

2.1 Decibel

Since the unit decibel (dB) is frequently used in RF engineering, a short introduction and definition of

terms is given here. The decibel is the unit used to express relative differences in signal power. It is

expressed as the base-10 logarithm of the ratio of the powers of two signals:

P [dB] = 10 · log(P/P0). (1)

It is also common to express the signal amplitude in dB. Since power is proportional to the square of a

signal’s amplitude, the voltage in dB is expressed as follows:

V [dB] = 20 · log(V/V0). (2)

In Eqs. (1) and (2), P0 and V0 are the reference power and voltage, respectively. A given value in dB

is the same for power ratios as for voltage ratios. It is important to note that there are no ‘power dB’

or ‘voltage dB’ as dB values always express a ratio. Conversely, the absolute power and voltage can be

obtained from dB values by

P = P0 · 10
P [dB]
10 , (3)

V = V0 · 10
V [dB]
20 . (4)

The advantage of logarithms as the unit of measurement is twofold:

i) signal power tends to span several orders of magnitude; and

ii) signal attenuation losses and gains can be expressed in terms of subtraction and addition.

Table 1 helps to indicate the order of magnitude associated with dB.

Frequently dB values are expressed using a special reference level and not SI units. Strictly speak-

ing, the reference value should be included in parentheses when giving a dB value, e.g. +3 dB (1 W)
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Fig. 1: The equivalent circuit of a diode

Fig. 2: A commonly used Schottky diode. The RF input of this detector diode is on the left and the video

output on the right (figure courtesy Agilent).

indicates 3 dB at P0 = 1 W, thus 2 W. However, it is more common to add some typical reference values

as letters after the unit, for instance, dBm defines dB using a reference level of P0 = 1 mW. Thus, 0

dBm correspond to −30 dBW, where dBW indicates a reference level of P0 = 1 W. Often a reference

impedance of 50 Ω is assumed. Other common units are:

i) dBmV for small voltages with V0 = 1 mV; and

ii) dBmV/m for the electric field strength radiated from an antenna with reference field strength E0 =
1 mV/m.

2.2 The RF diode

One of the most important elements inside all sophisticated measurement devices is the fast RF diode

or Schottky diode. The basic metal–semiconductor junction has an intrinsically very fast switching time

of well below a picosecond, provided that the geometric size and hence the junction capacitance of the

diode is small enough. However, this unavoidable and voltage-dependent junction capacity will lead to

limitations of the maximum operating frequency. The equivalent circuit of such a diode is depicted in

Fig. 1 and an example of a commonly used Schottky diode can be seen in Fig. 2. One of the most

important properties of any diode is its characteristic, which is the relation of current as a function of

voltage [1]. This relation is depicted graphically for two diodes in Fig. 3. As can be seen, the diode is

a non-ideal commutator (on the contrary to that shown in Fig. 4) for small signals. Note that it is not

possible to apply big signals, since this kind of diode would burn out. Although there exist rather large

power versions of Schottky diodes which can stand more than 9 kV and several tens of amperes, they are

not suitable in microwave applications due to their large junction capacity.

The region where the output voltage is proportional to the input power is called the square-law

region (Fig. 5). In this region the input power is proportional to the square of the input voltage and the
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Fig. 3: Current as a function of voltage for different diode types (LBSD = low barrier Schottky diode)
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Fig. 4: The current–voltage relation of an ideal commutator with threshold voltage

output signal is proportional to the input power, hence the name square-law region.

The transition between the linear region and the square-law region is typically between −10 and

−20 dB (Fig. 5). For a more precise description, see [2].

There are fundamental limitations when using diodes as detectors. The output signal of a diode

(essentially DC or modulated DC if the RF is amplitude modulated) does not contain phase information.

In addition, the sensitivity of a diode restricts the input level range to about −60 dBm at best, which is

not sufficient for many applications.

The minimum detectable power level of a RF diode is specified by the ‘tangential sensitivity’,

which typically amounts to −50 to −55 dBm for 10 MHz video bandwidth at the detector output [3].

To avoid these limitations, another method of operating such diodes is needed. This method is

described in the next section.

2.3 Mixer

For the detection of very small RF signals a device that has a linear response over the full range (from

0 dBm (= 1 mW) down to thermal noise = −174 dBm/Hz = 4·10−21 W/Hz) is preferred. A RF mixer

provides these features using one, two or four diodes in different configurations (Fig. 6). A mixer is
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Fig. 5: Relation between input power and output voltage

essentially a multiplier with a very high dynamic range implementing the function

f1(t) · f2(t) with f1(t) = RF signal and f2(t) = LO signal (5)

or, more explicitly for two signals with amplitude ai and frequency fi (i = 1, 2),

a1 cos(2πf1t+ ϕ) · a2 cos(2πf2t) =
1

2
a1a2 [cos((f1 + f2)t+ ϕ) + cos((f1 − f2)t+ ϕ)] . (6)

Thus, we obtain a response at the intermediate-frequency (IF) port that is at the sum and difference

frequencies of the local oscillator (LO = f1) and RF (= f2) signals.

Examples of different mixer configurations are shown in Fig. 6.

As can be seen from Fig. 6, the mixer uses diodes to multiply the two ingoing signals. These

diodes function as a switch, opening different circuits with the frequency of the LO signal (Fig. 7).

The response of a mixer in the time domain is depicted in Fig. 8. The output signal is always in

the ‘linear range’ provided that the mixer is not in saturation with respect to the RF input signal. Note

that for the LO signal the mixer should always be in saturation to make sure that the diodes work as a

nearly ideal switch. The phase of the RF signal is conserved in the output signal available from the RF

output.

2.4 Amplifier

A linear amplifier augments the input signal by a factor which is usually indicated in decibels (dB). The

ratio between the output and the input signals is called the transfer function and its magnitude – the

voltage gain G – is measured in dB and given as

G[dB] = 20 · VRFout

VRFin

or
VRFout

VRFin

= 20 · logG[lin]. (7)

The circuit symbol of an amplifier is shown in Fig. 9 together with its S-matrix.
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Fig. 6: Examples of different mixer configurations

The bandwidth of an amplifier specifies the frequency range where it is usually operated, see

Fig. 10. This frequency range is defined by the −3 dB points1 with respect to its maximum or nominal

transmission gain.

In an ideal amplifier the output signal would be proportional to the input signal. However, a real

amplifier is non-linear, such that for larger signals the transfer characteristic deviates from its linear

properties valid for small-signal amplification. When increasing the output power of an amplifier, a point

is reached where the small-signal gain becomes reduced by 1 dB (Fig. 11). This output power level

defines the 1 dB compression point, which is an important measure of quality for any amplifier (low

level as well as high power).

The transfer characteristic of an amplifier can be described in terms which are commonly used for

RF engineering, i.e. the S-matrix, see Section 7. As implicitly contained in the S-matrix, the amplitude

and phase information of any spectral component are preserved when passing through an ideal amplifier.

For a real amplifier the element G = S21 (transmission from port 1 to port 2) is not a constant but a

complex function of frequency. Also, the elements S11 and S22 are not 0 in reality.

1The −3 dB points are the points left and right of a reference value (e.g. a local maximum of a curve) that are 3 dB lower

than the reference.
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Fig. 7: Two circuit configurations interchanging with the frequency of the LO where the switches repre-

sent the diodes.
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Fig. 8: Time-domain response of a mixer
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Fig. 9: Circuit symbol and S-matrix of an ideal amplifier

2.5 Interception points of non-linear devices

Important characteristics of non-linear devices are the interception points. Here only a brief overview

will be given. For further information, the reader is referred to [4].

One of the most relevant interception points is the interception point of third order (IP3 point). Its

importance derives from its straightforward determination, plotting the input versus the output powers

in logarithmic scale (Fig. 11). The IP3 point is usually not measured directly, but extrapolated from

measurement data at much smaller power levels in order to avoid overload and damage of the device

under test (DUT). If two signals (f1, f2 > f1) which are closely spaced by ∆f in frequency are simul-

taneously applied to the DUT, the intermodulation products appear at +∆f above f2 and at −∆f below

f1. This method is usually called third-order intermodulation (TOI). An example of automatized TOI

measurement is shown in Fig. 12.

The transfer functions of weakly non-linear devices can be approximated by Taylor expansion.

Using n higher order terms on one hand and plotting them together with an ideal linear device in log-

arithmic scale leads to two lines with different slopes (xn
log→ n · log x). Their intersection point is
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Fig. 10: Definition of the bandwidth

Fig. 11: Example for the 1 dB compression point [4]

the intercept point of nth order. These points provide important information concerning the quality of

non-linear devices.

In this context, the aforementioned 1 dB compression point of an amplifier is the intercept point

of first order. For the method of measurements of the 1 dB compression point, see Section 9.10.

Similar characterization techniques can also be applied with mixers, which, with respect to the LO

signal, cannot be considered weakly non-linear devices.

2.6 The superheterodyne concept

The word superheterodyne is composed of three parts: super (Latin: over), ǫτǫρω (hetero, Greek: differ-

ent) and δυναµισ (dynamis, Greek: force) and can be translated as two forces superimposed2 . Different

abbreviations exist for the superheterodyne concept. In the USA it is often referred to by the simple word

‘heterodyne’ and in Germany one can find the terms ‘super’ or ‘superhet’. The ‘weak’ incident signal is

subjected to non-linear superposition (i.e. mixing or multiplication) with a ‘strong’ sine wave from a LO.

At the mixer output we then get the sum and difference frequencies of the signal and LO. The LO signal

can be tuned such that the output signal is always at the same frequency or in a very narrow frequency

band. Therefore, a fixed-frequency bandpass with excellent transfer characteristics can be used, which

is cheaper and easier than a variable bandpass with the same performance. A well-known application of

2The direct translation (roughly) would be: another force becomes superimposed.

8



Fig. 12: An example of automatized TOI measurement

this principle is any simple radio receiver (Fig. 13).

3 SPECTRUM ANALYSER

RF spectrum analysers can be found in virtually every control room of a modern particle accelerator.

They are used for many aspects of beam diagnostics including Schottky signal acquisition and RF obser-

vation. A spectrum analyser is in principle very similar to a common superheterodyne broadcast receiver,

except for the requirements of choice of functions and change of parameters. It sweeps automatically

through a specified frequency range, which corresponds to an automatic turning of a knob on a radio. The

signal is then displayed in the amplitude/frequency plane. Thirty years ago, instruments were set manu-

ally and had some sort of analogue or cathode ray tube (CRT) display. Nowadays, with the availability

of cheap and powerful digital electronics for control and data processing, nearly all instruments can be

remotely controlled. The microprocessor permits fast and reliable setting of the instrument and reading

of the measured values. Extensive data treatment for error correction, complex calibration routines and

self tests is a great improvement. However, the user of such a sophisticated system may not always be

aware of what is really going on in the analogue section before all data are digitized. The basis of these

analogue sections is discussed now.

In general, there are two types of spectrum analyser:

– scalar spectrum analysers (SAs) and

– vector spectrum analysers (VSAs).

The SA provides only information of the amplitude of an ingoing signal, while the VSA provides the

phase as well.
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Fig. 13: Schematic drawing of a superheterodyne radio receiver
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Fig. 14: Example of amplitude modulation in time and frequency domains
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Fig. 15: A tunable bandpass as a simple spectrum analyser (SA)

3.1 Scalar spectrum analysers

A common oscilloscope displays a signal in the amplitude–time plane (time domain). The SA follows

another approach and displays it in the frequency domain.

One of the major advantages of the frequency-domain display is the sensitivity to periodic pertur-

bations. For example, 5% distortion is already difficult to see in the time domain but in the frequency

domain the sensitivity to such ‘sidelines’ (Fig. 14) is very high (−120 dB below the main line). A very

faint amplitude modulation (AM) of 10−12 (power) on some sinusoidal signals would be completely in-

visible on the time trace, but can be displayed as two sidelines 120 dB below the carrier in the frequency

domain [5].

We will now consider only serial processing or swept tuned analysers (Fig. 15).

The easiest way to design a swept tuned spectrum analyser is by using a tunable bandpass. This
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Fig. 16: Block diagram of a spectrum analyser
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Fig. 17: Frequency chart of the SA of Fig. 16, IF = 2 GHz

may be an LC circuit or a YIG filter (YIG = yttrium iron garnet) beyond 1 GHz. The LC filter exhibits

poor tuning, stability and resolution. YIG filters are used in the microwave range (as preselectors) and

for YIG oscillators. Their tuning range is about one decade, with Q values exceeding 1000.

For much better performance, the superheterodyne principle can be applied (Fig. 13).

As already mentioned, the non-linear element (four-diode mixer or double-balanced mixer) deliv-

ers mixing products as

fs = fLO ± fIF. (8)

Assuming a signal range from 0 to 1 GHz for the spectrum analyser depicted in Fig. 16 and fLO between

2 and 3 GHz, we get the frequency chart shown in Fig. 17.

Obviously, for a wide input frequency range without image response we need a sufficiently high

IF. A similar situation occurs for AM- and FM-broadcast receivers (AM-IF = 455 kHz, FM-IF = 10.7

MHz). But, for a high IF (e.g. 2 GHz) a stable narrowband IF filter is difficult to construct, which is why

most SAs and high-quality receivers use more than one IF. Certain SAs have four different LOs, some

fixed, some tunable. For a large tuning range the first, and for a fine tune (e.g. 20 kHz), the third LO is
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tuned.

Multiple mixing is necessary when going to a lower IF (required when using high-Q quartz filters)

for good image response suppression of the mixers.

It can be shown that the frequency of the nth LO must be higher than the (say) 80 dB bandwidth

(BW) of the (n − 1)th IF-band filter. A disadvantage of multiple mixing is the possible generation of

intermodulation lines if amplitude levels in the conversion chain are not carefully controlled.

The requirements of a modern SA with respect to frequency are

– high resolution,

– high stability (drift and phase noise),

– wide tuning range,

– no ambiguities

and, with respect to amplitude response, are

– large dynamic range (100 dB),

– calibrated, stable amplitude response,

– low internal distortions.

It should be mentioned that the size of the smallest IF-bandpass filter width ∆f has an important influ-

ence on the maximum sweep rate (or step width and rate when using a synthesizer):

df

dt
< (∆f)2. (9)

In other words, the signal frequency has to remain at ∆T = 1/∆f within the bandwidth ∆f .

On many instruments the proper relation between ∆f and the sweep rate is automatically set to

the optimum value for the highest possible sweep speed, but it can always be altered manually (setting

of the resolution bandwidth).

Caution is advised when applying, but not necessarily displaying, two or more strong (> 10 dBm)

signals to the input. Intermodulation third-order products may appear (from the first mixer or amplifier)

and could lead to misinterpretation of the signals to be analysed.

Spectrum analysers usually have a rather poor noise figure of 20–40 dB, as they often do not use

pre-amplifiers in front of the first mixer (dynamic range, linearity). But, with a good pre-amplifier, the

noise figure can be reduced to almost that of the pre-amplifier. This configuration permits amplifier noise-

figure measurements to be made with reasonable precision of about 0.5 dB. The input of the amplifier to

be tested is connected to hot and cold terminations and the two corresponding traces on the SA display

are evaluated [6–10].

4 VECTOR SPECTRUM AND FAST FOURIER TRANSFORM ANALYSER

The modern vector spectrum analyser (VSA) is essentially a combination of a two-channel digital oscil-

loscope and a spectrum analyser fast Fourier transform (FFT) display. The incoming signal gets down-

mixed, bandpass (BP) filtered and passes an analog-to-digital converter (ADC) (generalized Nyquist for

BP signals; fsample = 2 · BW). A schematic drawing of a modern VSA can be seen in Fig. 18.

The digitized time trace then is split into I (in-phase) and Q (quadrature, 90 degree offset) compo-

nents with respect to the phase of some reference oscillator. Without this reference, the term ‘vector’ is

meaningless for a spectral component.

One of the great advantages is that a VSA can easily separate AM and FM components.

An example of vector spectrum analyser display and performance is given in Figs. 19 and 20.

Both figures were obtained during measurements of the electron cloud in the CERN SPS (Super Proton

Synchrotron).
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Fig. 18: Block diagram of a vector spectrum analyser

Fig. 19: Single-sweep FFT display similar to a very slow scan on a swept spectrum analyser

5 NOISE BASICS

The concept of ‘noise’ was applied originally to the type of audible sound caused by statistical variations

of the air pressure with a wide flat spectrum (white noise). It is now also applied to electrical signals,

the noise ‘floor’ determining the lower limit of signal transmission. Typical noise sources are: Brownian

movement of charges (thermal noise), variations of the number of charges involved in the conduction

(flicker noise) and quantum effects (Schottky noise, shot noise). Thermal noise is only emitted by struc-

tures with electromagnetic losses, which, by reciprocity, also absorb power. Pure reactances do not emit

noise (emissivity = 0).
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Fig. 20: Spectrogram display containing about 200 traces as shown on the left-hand side in colour coding.

Time runs from top to bottom.

Different categories of noise can be defined:

– white, which has a flat spectrum,

– pink, being low-pass filtered and

– blue, being high-pass filtered.

In addition to the spectral distribution, the amplitude density distribution is also required in order to

characterize a stochastic signal. For signals coming from very many independent sources, the amplitude

density has a Gaussian distribution. The noise power density delivered to a load by a black body is given

by Planck’s formula:
NL

∆f
= hf

(

ehf/kT − 1
)−1

, (10)

where NL is the noise power delivered to the load, h = 6.625 · 10−34 J s the Planck constant and k =
1.38056 · 10−23 J/K Boltzmann’s constant.

Equation (10) indicates constant noise power density up to about 120 GHz (at 290 K) with 1%

error. Beyond, the power density decays and there is no ‘ultraviolet catastrophe’, i.e. the total noise

power is finite.

The radiated power density of a black body is given as

Wr(f, T ) =
hf3

c2
[

ehf/kT − 1
] . (11)

For hf << kT the Rayleigh–Jeans approximation of Eq. (10) holds:

NL = kT∆f, (12)

where in this case NL is the power delivered to a matched load. The no-load noise voltage u(t) of a

resistor R is given as

u2(t) = 4kTR∆f (13)

and the short-circuit current i(t) by

i2(t) = 4
kT∆f

R
= 4kTG∆f, (14)
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Fig. 21: Equivalent circuit for a noisy resistor terminated by a noiseless load

Ri,Wu

R1, T1
W ′
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R2, T2 R2, T2

Fig. 22: Noisy one-port with resistors at different temperatures [6, 11]

where u(t) and i(t) are stochastic signals and G is 1/R. The linear average u(t), i(t) vanishes. Of

special importance is the quadratic average u2(t), i2(t).

The available power (which is independent of R) is given by (Fig. 21)

u2(t)

4R
= kT∆f. (15)

We define a spectral density function [6]

Wu(f) = 4kTR,

Wi(f) = 4kTG, (16)

u2(t) =

∫ f2

f1

Wu(f)df.

A noisy resistor may be composed of many elements (resistive network). In general, it is made from

many carbon grains which have homogeneous temperatures. But, if we consider a network of resistors

with different temperatures and hence with an inhomogeneous temperature distribution (Fig. 22), the

spectral density function changes to

Wu =
∑

j

Wuj = 4kTnRi, (17)

Tn =
∑

j

βjTj , (18)
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Fig. 23: Equivalent sources for the circuit of Fig. 22

where Wuj are the noise sources (Fig. 23), Tn is the total noise temperature, Ri the total input impedance

and βj are coefficients indicating the fractional part of the input power dissipated in the resistor Rj . It is

assumed that the Wuj are uncorrelated for reasons of simplicity.

The relative contribution (βj) of a lossy element to the total noise temperature is equal to the

relative dissipated power multiplied by its temperature:

Tn = β1T1 + β2T2 + β3T3 + · · · . (19)

A nice example is the noise temperature of a satellite receiver, which is nothing else than a directional

antenna. The noise temperature of free space amounts roughly to 3 K. The losses in the atmosphere,

which is an air layer of 10 to 20 km length, cause a noise temperature at the antenna output of about 10

to 50 K. This is well below room temperature of 290 K.

So far, only pure resistors have been considered. Looking at complex impedances, it can be

seen that losses from dissipation occur in Re(Z) only. The available noise power is independent of the

magnitude of Re(Z) with Re(Z) ¿ 0. For Figs. 22 and 23, Eq. (18) still applies, except that Ri is replaced

by Re(Zi). However, it must be remembered that in complex impedance networks the spectral power

density Wu becomes frequency dependent [11].

The rules mentioned above apply to passive structures. A forward-biased Schottky diode (external

power supply) has a noise temperature of about T0/2 + 10%. A biased Schottky diode is not in thermody-

namic equilibrium and only half of the carriers contribute to the noise [6]. But, it represents a real 50 Ω
resistor when properly forward biased. For transistors and in particular field-effect transistors (FETs), the

physical mechanisms are somewhat more complicated. Noise temperatures of 50 K have been observed

on a FET at 290 K physical temperature.

6 NOISE-FIGURE MEASUREMENT WITH THE SPECTRUM ANALYSER

Consider an ideal amplifier (noiseless) terminated at its input (and output) with a load at 290 K with an

available power gain (Ga). We measure at the output [7, 12]:

Pa = kT0∆fGa. (20)

For T0 = 290 K (or often 300 K), we obtain kT0 = −174 dBm/Hz (−dBm = decibel below 1 mW).

At the input we have for some signal Si a certain signal/noise ratio Si/Ni and at the output So/No. For

an ideal (= noiseless) amplifier Si/Ni is equal to So/No, i.e. the signal and noise levels are both shifted

by the same amount. This gives the definition of the noise figure F :

F =
Si/Ni

So/No
. (21)
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Fig. 24: Relation between source noise temperature Ts and output power Pout for an ideal (noise-free)

and a real amplifier [7, 12].

The ideal amplifier has F = 1 or F = 0 dB and the noise temperature of this amplifier is 0 K. The

real amplifier adds some noise, which leads to a decrease in So/No due to the noise added (= Nad):

F =
Nad + kT0∆fGa

kT0∆fGa

. (22)

For a linear system the minimum noise figure amounts to Fmin = 1 or 0 dB. However, for non-

linear systems one may define noise figures F < 1. Now assume a source with variable noise temper-

ature connected to the input and measure the linear relation between amplifier output power and input

termination noise temperature (Ts = Tsource).

In a similar way, a factor Y can be defined:

Y =
Te + TH

Te + TC

,

Te =
TH − Y TC

Y − 1
,

F =
[(TH/290) − 1]− Y [(TC/290) − 1]

Y − 1
, (23)

where Te is the effective input noise temperature (see Fig. 24) and TH and TC are the noise temperatures

of a hot or a cold input termination. To find the two points on the straight line of Fig. 24, one may

switch between two input terminations at 373 K (100◦C) and 77 K. For precise reading of RF power,

calibrated piston attenuators in the IF path (IF superheterodyne receiver) are in use. This is the hot/cold

method. The difference between the Y factor and the hot/cold method is that for the latter the input of

the amplifier becomes physically connected to resistors at different temperatures (77 and 373 K). For the

Y factor, the noise temperature of the input termination is varied by electronic means between 300 and

12000 K (physical temperature always around 300 K).
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As a variant of the 3 dB method with a controllable noise source, the excess noise temperature

definition (Tex = TH − TC) is often applied. A switchable 3 dB attenuator at the output of the amplifier

just cancels the increase in noise power from TH−TC. Thus, the influence of non-linearities of the power

meter is eliminated. To measure the noise of a one-port one may also use a calibrated spectrum analyser.

However, spectrum analysers have high noise figures (20–40 dB) and the use of a low-noise pre-amplifier

is recommended. This ‘total power radiometer’ [8] is not very sensitive but often sufficient, e.g., for

observation of the Schottky noise of a charged-particle beam. Note that the spectrum analyser may also

be used for two-port noise-figure measurements. An improvement of this ‘total power radiometer’ is

the ‘Dicke radiometer’ [8]. It uses a 1 kHz switch between the unknown one-port and a controllable

reference source. The reference source is made equal to the unknown via a feedback loop, and one

obtains a resolution of about 0.2 K. Unfortunately, switch spikes sometimes appear. Nowadays, switch-

free correlation radiometers with the same performance are available [13].

The noise figure of a cascade of amplifiers is [6, 7, 11–13]

Ftotal = F1 +
F2 − 1

Ga1
+

F3 − 1

Ga1Ga2
+ · · · . (24)

As can be seen from Eq. (24), the first amplifier in a cascade has a very important effect on the total

noise figure, provided Ga1 is not too small and F2 is not too large. In order to select the best amplifier

from a number of different units to be cascaded, one can use the noise measure M :

M =
F − 1

1− (1/Ga)
. (25)

The amplifier with the smallest M has to be the first in the cascade [12].

7 INTRODUCTION TO NETWORK ANALYSIS AND S-PARAMETERS

One of the most common measurement tasks in the field of RF engineering is the analysis of circuits and

electrical networks. Such networks can be a simple one-port (two-pole), containing only a few passive

components (resistors, inductances and capacitors) or they may be complex units, consisting of active or

non-linear components with several input and output ports.

A network analyser is one of the most versatile and valuable pieces of measurement equipment

used in a RF laboratory or particle accelerator control room. The best commercially available network

analysers can cover a frequency range of nine orders of magnitude (from a few Hz to several GHz) with

up to 0.1 Hz resolution. By exciting the device under test (DUT) with a well-defined input in terms

of frequency and amplitude and recording the response of the network, for each frequency a complex

number is determined (reflection and/or transmission). In microwave engineering the properties of a

DUT are usually described as scattering parameters (S-parameters).

In the following sections, scalar and vector network analysers are introduced and measurement

techniques for the determination of S-parameters of networks are discussed. S-parameters are basically

defined only for linear networks. In the real world, many DUTs are at least weakly non-linear (e.g.

active elements such as amplifiers or mixers). For analysis of these devices certain approximations or

extensions of the definitions are required [15].

Another interesting application is the determination of the beam transfer function (BTF), where

the DUT is a circulating particle beam in an accelerator.

7.1 One-ports

In RF engineering, wave quantities are preferred over currents or voltages for the characterization of RF

circuits. We can distinguish between incident (a) and reflected waves (b). The incident wave travels

from a source to the DUT – the reflected one in the opposite direction. The fundamental reason for this
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(a) (b)

Fig. 25: Wave quantities of a one-port (with two poles) and impedance ZL: (a) incident (a1) and reflected

(b1) wave; (b) relation of a1 and b1 to V1 and I1.

terminology is the fact that in RF engineering the linear geometrical dimensions are often larger than

10% of the corresponding free-space wavelength. This also requires the definition of a reference plane to

which the measurement is referring. Without this reference plane, in particular the phase of the reflection

coefficient is undefined, which renders vectorial measurements impossible. Of course a mathematically

correct description of the DUT in terms of voltage and current is still possible and will also return correct

results, but working with wave quantities turns out to be much more convenient in practice. In particular

both methods – if correctly applied – have no fundamental limitation, e.g. S-parameters can be used at

very low frequencies and voltage and current descriptions can be used at very high frequencies. Both

methods are over the full frequency range completely equivalent; the results are mutually convertible.

This fact can also be expressed in different terms, namely S-parameters can be converted into impedances

and vice versa.

The interface of the DUT to the outside world is one or more pole pairs, which are commonly

referred to as ports. A device with one pair of poles (as in Fig. 25a) is described as a one-port, where one

incident (a1) and one reflected (b1) wave can propagate simultaneously. The index of the wave quantities

represents the number of the port.

The wave quantities can be determined from the voltage and current at the port. They are related

to each other

a1 =
V1 + I1Z0

2
√
Z0

, b1 =
V1 − I1Z0

2
√
Z0

, (26)

where V1 and I1 represent the voltage and current respectively at the port as depicted in Fig. 25b. Z0 is

an arbitrary reference impedance (often, but not necessarily always, the characteristic impedance Z0 =
ZG = 50 Ω of the system).

The wave quantities have the dimension of
√
W (see [14]). This normalization is important for the

conservation of energy. The power which is travelling towards the DUT can be calculated by Pinc = |a|2,

the reflected power by |b|2. It is important to note that this definition is mainly used in the USA – in

European notation, the incident power is usually calculated by Pinc = 0.5|a|2. These conventions have

no impact on the calculation of S-parameters and only need to be considered when the absolute power is

of interest.

The reflection coefficient Γ represents the ratio of the incident wave to the reflected wave on a

specific port. It is defined as

Γ =
b1
a1

. (27)

By substitution with Eq. (26), we can find a relation between the complex impedance ZL of a
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Fig. 26: All possible S-parameters of a two-port network

one-port and its complex reflection coefficient Γ:

Γ =
ZL − Z0

ZL + Z0
. (28)

There are some particular cases which are worth noting:

7.2 Two-ports

Looking at electrical networks with two ports (e.g. attenuators, amplifiers), we find more quantities to be

measured. Besides the reflection coefficients on either port, the transmission in forward and reverse di-

rections can also be characterized. We now require the definition of scattering parameters (S-parameters)

for two ports. The idea is to describe how the incident energy on one port is scattered by the network

and exits through the other ports. All the possible signal paths through a two-port are shown in Fig. 26.

A two-port has four complex and frequency-dependent scattering parameters:

S11 =
b1
a1

, S12 =
b1
a2

, S21 =
b2
a1

, S22 =
b2
a2

. (29)

Here S11 and S22 are equal to the reflection coefficients Γ on the respective ports – but only with the

condition that the corresponding other port is terminated with the characteristic impedance. S21 and S12

are the forward and reverse transmission coefficients, respectively. The first index of the S-parameter

defines at which port the outgoing wave is observed, the second index defines at which port the network

is excited. This leads to the counterintuitive appearing situation, that for forward transmission, the corre-

sponding S-parameter is S21 and not S12. The S-parameters are measured by exactly the same definition.

The internal source of the network analyser excites an incident wave on port one, namely a1. Now b1
and b2, the outgoing waves from the DUT, can be measured, which allows the determination of S11 and

S21 (provided that port one and port two are terminated with their characteristic impedances).

It is very important to terminate all ports of the DUT with the respective characteristic impedances.

In many situations this is Z0 but there are cases where the characteristic impedance is different on port

one and port two, such as a transformer with a turns ratio of two, leading to an impedance transformation

by a factor of four. In this case the characteristic impedance would be for port one 50 Ω and for port two

12.5 Ω.

The termination prevents unwanted reflections and makes sure the DUT is only excited by a single

incident wave. For practical S-parameter measurements this implies that any port of the DUT needs

to be connected to a matched load corresponding to the characteristic impedance of this port. This rule

includes in particular the port connected to the VNA measurement output, or in other words the generator

impedance must also match the impedance of the DUT for the port under consideration. As a practical

example one cannot measure this in a straightforward manner – unless a special calibration procedure is

used – with a 50 Ω network analyser and a DUT with 25 Ω characteristic impedance. But, modern VNAs

permit, in a special calibration procedure, the modification of their characteristic impedance to any value

(within a reasonable range from > 5 Ω to < 500 Ω) and adapt it to the requirements of the DUT.
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Fig. 27: A simple measurement set-up for the scalar transmission coefficient (|S21|)

The S-parameters are an intrinsic property of the DUT and not a function of the incident power

used in the measurement (condition of linearity). Obviously, the S-parameters measured shall be inde-

pendent of the instrumentation used for the measurement.

Once all n2 S-parameters for an n-port network are measured, the properties of this network can

be described by a set of linear equations. For incident waves a1 and a2 of arbitrary phase and magnitude

on a two-port, the outgoing or scattered waves b1 and b2 can be determined using

b1 = S11a1 + S12a2, (30)

b2 = S21a1 + S22a2.

These equations can be written in matrix format, for convenience:

~b = S~a (31)
[

b1
b2

]

=

[

S11 S12

S21 S22

] [

a1
a2

]

. (32)

The S-matrix is a linear model of the DUT. Its diagonal elements represent the reflection coeffi-

cients of each port. The remaining elements characterize all possible signal transmission paths between

the ports. S-parameters are in general complex and a function of frequency. The set of linear equations

given by the S-matrix must be solved for a single frequency at a time. S-parameters are usually acquired

for a certain frequency span at a number N of discrete frequency steps. With N data points, the system

of equations has to be solved N times. A discussion of general properties of the S-matrix can be found

in [14].

8 SCALAR NETWORK ANALYSIS

In a scalar network analyser, only the amplitude of the signal is measured (reflected or transmitted) and

the phase is not available. Consequently, only the absolute value (the magnitude) of the complex S-

parameters can be obtained. These kinds of devices are generally less expensive than vector network

analysers. A very simple measurement set-up as used more than 50 years ago is shown in Fig. 27.

The measurement is done twice, the first time (Fig. 27, left) without a DUT to measure the power

of the incident signal (V1). Then the DUT is inserted (Fig. 27, right), V2 is measured and the magnitude

of the transmission coefficient can be calculated by

|S21| ∝
V2

V1
. (33)

For obtaining a reading in decibels, a logarithmic amplifier is sometimes used following the de-

tector. It has a logarithmic transfer function (Vout = log Vin) and permits the showing of a large dynamic

range on a dB scale. Also, the mathematical operation of a division, required for normalization in

Eq. (33), then transforms into the easier procedure of a subtraction.
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Fig. 28: Simplified circuit diagram of a typical automatic level control

The detector can be any kind of device converting the input RF signal into a DC voltage, which is

‘more or less’3 proportional to RF power. There are basically three possibilities to achieve this:

Rectifier A very fast Schottky diode and a low-pass filter are used to convert the input RF signal to a

DC voltage. Operating the diode in its square-law region (Pin < −10 dBm) results in an output

voltage proportional to the RF power; see Section 2.2. Advantage: cheap, fast response (depending

on fmax of the output filter), disadvantage: commercially available RF power meters, based on

Schottky diodes, can operate from −60 dBm (limited by tangential sensitivity) up to about 30

dBm (damage level). The non-linearity of the output signal versus input power is compensated by

electronic means (look-up table) in this kind of device. Coaxial RF Schottky detectors are usually

limited to about 100 GHz, essentially determined by the connector available for this frequency

range. Usually an input matching network has to be used to adjust the input impedance of the

Schottky diode to Z0 = 50 Ω.

Thermal measurement There are several types of detectors based on heating effects for the measure-

ment of RF power. When using a bolometer (thermistor or barretter), the high temperature coeffi-

cient of the thermal conductivity of certain metals or metal alloys is used. By a non-linear calibra-

tion the dissipated heat is calculated from the DC-wise measured change in temperature ∆T . Bar-

retters use the positive temperature coefficient of metals like tungsten and platinum. Thermistors

consist of a metal oxide with a strong negative temperature coefficient. Another class of RF power

meters based on heating is the thermo-element, which takes advantage of the thermo-electrical co-

efficient of a junction between two different metals. A well-known example is the Sb-Bi junction,

which has a temperature coefficient of about 10−4 V/K, which is one of the highest values available

for this kind of detector. Even better values can be achieved using semiconductor–metal junctions,

where thermoelectric coefficients of 250 µV/K can be obtained. For further details, see [16].

Mixer Multiplying two sinusoidal signals with different frequencies results in signals at the sum and

difference frequencies at the multiplier’s output; see Section 2.3. This can technically be used to

convert a band of high-frequency signals to a much lower IF. Now all the measurements can be

carried out at this IF.

8.1 Levelling

If measurements are done over a wide frequency range the signal strength V0 of the source has to stay

constant. This usually requires an active feedback loop (levelling), keeping V0 constant and independent

of frequency. Every feedback loop requires a measured process variable that has to be controlled to a

certain set point. This is the output signal level V1. A resistive power divider may be used to provide this

reference signal, while keeping its inputs and outputs matched to Z0 = 50 Ω (Fig. 28). In this example,

the test signal arriving at the DUT is reduced by 6 dB due to the insertion loss of the resistive power

divider. The feedback loop ensures that the signal going to the DUT is constant and has a known power

level over a wide frequency range.

3With the term ‘more or less’, it should be stressed that many detectors have a non-linear relation between input power and

output voltage.
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Fig. 29: Feedback loop of a typical automatic level control (ALC)

Fig. 30: Dual directional coupler in a network analyser

For characterization of linear DUTs, only the ratio V2/V1 is required, independent of the absolute

value of V0. Theoretically, one may carry out S-parameter measurements with an unlevelled generator,

but in practice the levelling has a large number of advantages, in particular for measurements on weakly

non-linear elements such as amplifiers.

8.2 Directional couplers

By changing the resistive power divider to a directional coupler, the insertion loss can be reduced to

much smaller values. This is shown in Fig. 29. V1 is an attenuated (by the coupling factor) replica of the

forward-travelling wave, which is only used for levelling and as reference. Typical directional couplers,

used for this purpose, have a coupling of –20 dB and a transmission attenuation in the main branch of

less than 0.3 dB. In contrast to the resistive power splitter, the directional coupler always has a more

limited frequency range, which can lead to other problems.

Modern network analysers (both scalar and vectorial versions) can measure the forward-transmission

coefficient, as well as the reflection coefficient of a DUT simultaneously, without the need to change any

connections manually. Each port of the instrument has a dual directional coupler that provides a replica

of the incident and reflected waves from the DUT. This is shown in Fig. 30. All those directional cou-

plers in combination with switches and attenuators are commonly called a test set. 20 or 30 years ago,

network analysers consisted of separate building blocks like S-parameter test set, frequency generator,

display and controller unit. All these elements had to be connected by lots of external cables. Modern

instruments have all those building blocks in a single frame, including advanced computer controls with

digital data input and output facilities.

From Fig. 30, the reflection and transmission coefficients are defined by

|S11| ∝
V3

V1
, |S21| ∝

V2

V1
. (34)

From the ratio of the reflected wave to the incident wave (S11), quantities such as the standing

wave ratio (SWR), reflection coefficient, impedance, admittance as well as return loss of the DUT can
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Fig. 31: A modern four-port VNA

be determined. From the ratio of the transmitted wave to the incident wave (S21), the gain or insertion

loss, the transmission coefficient, the insertion phase and group delay of the DUT can be found.

9 VECTOR MEASUREMENTS

A vector network analyser (VNA) is able to measure the magnitude and phase of a complex S-parameter.

There are different possible hardware configurations for the implementation of such an instrument like

six-port reflectometers, certain RF bridge methods or superheterodyne RF network analysers. Here only

the last one will be described.

9.1 Modern vector network analysers

A modern network analyser contains a generator which produces the signal seen by the DUT. This signal

is usually generated by a synthesizer-type oscillator and is adjustable in very fine steps over a large

frequency range, in a programmable manner. Since all modern VNAs operate with analogue or digital

down mixing, the generation of a tracking LO frequency is also needed. This tracking LO is typically

generated by PLL circuits and represents essentially a second oscillator following the main frequency

with a specified offset.

Digital signal processing is used to adjust the observation bandwidth (IF bandwidth) over a very

wide range (from 1 Hz to up to 20 MHz in certain instruments). The vectorial nature of the signal is

preserved; both the phase and magnitude are acquired. More on the internal signal processing can be

found in [17, 18]. Note that similar to the spectrum analyser, the sweep time and resolution bandwidth

cannot be adjusted independently. A modern four-port vector network analyser is shown in Fig. 31.

Although complete network analysis of any N -port can be done with a two-port device, a four-

port unit can be very convenient for certain measurement tasks. It permits a quick analysis e.g. of a

directional coupler or a three-port circulator without the need for swapping cables.
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9.2 Time-domain transformation (synthetic pulse)

For any linear system, a data trace in the frequency domain can be converted to the time domain by a

fast Fourier transformation4 and vice versa. This is the basis of the synthetic pulse technique, available

on many modern VNAs. It was commercially introduced by Hewlett-Packard in the 1980s for network

analyser applications.

It renders the VNA even more versatile, allowing the display of the impulse (Gaussian) and also

the step response of the DUT and the carrying out of time-domain reflectometry (TDR) measurements.

Typical applications of this measurement are:

1. Finding and localizing discontinuities (faults) in transmission lines.

2. Separating the scattering properties of sections of complicated RF networks by time-domain gat-

ing.

3. Echo cancellation (in multipath environments).

4. Synthetic pulse time-domain reflectometry using waveguide modes has been used for obstacle

detection in the LHC beampipe.

The only constraint of the applicability of the synthetic pulse measurement technique is that the

DUT must be a linear and time-invariant (LTI) system.

A measurement example is shown in Fig. 32. A transmission line with a given length and some

perturbation is connected to the calibrated VNA. The real part of the Fourier-transformed reflection

coefficient (S11(ω)) is shown versus time. The VNA permits the display of either the synthetic step

(Fig. 32a) or the impulse response (Fig. 32b). The step is simply obtained by integration over the impulse

response.

The incident synthetic pulse is scattered from the discontinuity and also from the open end of the

cable. The travel time for the pulse can be read on the horizontal axis on the time-domain display. In this

example we measure a delay of td = 22 ns until the open end of the cable becomes visible. This time

accounts for the impulse travelling towards the open end and back; thus, the factor 1/2 has to be taken

into account when calculating line length:

l =
c√
ε
· 1
2
td. (35)

The mechanical line length is given by Eq. (35). In this example we have ǫ = 2.3, which returns

a line length of l = 2.2 m. The same method can be applied for obtaining the position of the irregularity

(deformation, bad connector) of the cable. Nearly all VNAs with time-domain option permit the desig-

nation of the velocity factor (1/
√
ε for a homogeneously filled transmission line) and thus convert travel

time to mechanical distance of the display.

Note that the step response shown in Fig. 32a returns the local reflection factor versus time. Along

the cable it amounts to Γ = 0, except for the position of the irregularity, indicating a well-matched 50 Ω
transmission line. At the end we notice a positive step to Γ = 1, indicating an open circuit (see Table 2).

The fact that in the pulse response display (Fig. 32b) the reflected pulse from the open end does

not reach unit amplitude is related to the impact of the cable attenuation of the transmission line used

in this example (semi-rigid coaxial cable around 2 m long). The amplitude of this reflection from the

open end indicates the attenuation over twice the electrical length of the cable at the centre frequency

(fmax = 3 GHz, fcentre = 1.5 GHz).

For practical application of instrumentation using the synthetic pulse technology, certain basic

properties of the discrete Fourier transform should be kept in mind. They are shown in Table 3. For

example: a long cable needs to be tested. Due to the long time window required in order to ensure that

4More precisely: by a discrete Fourier transformation. The FFT is just an optimized form of this, exploiting symmetries in

a clever way. This saves computation time. However, both algorithms will produce the same result for equal input data.
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Table 2: Key numbers for the reflection coefficient

DUT ZL Γ

Open circuit ∞ +1

Short circuit 0 –1

Matched load Z0 0

Load Z0/2 –1/3

Load 2Z0 1/3

(a) (b)

Fig. 32: Synthetic pulse measurement with a VNA: (a) step response; (b) impulse response. The mea-

sured frequency data is converted by an inverse discrete Fourier transformation (iDFT) to the time do-

main. Now the synthetic impulse response of the cable can be plotted over time. The reflections of the

incident pulse on an irregularity and at the end of the cable can be seen clearly. By measuring the delay

in between, the position of the irregularity and the electrical length of the cable can be calculated.

Table 3: Most important characteristics of the FFT

Time domain Frequency domain

Tmax (time span) ↔ ∆f (frequency resolution)

∆t (time resolution) ↔ fmax (frequency span)

all multiple reflections have decayed to zero, a close spacing of the frequency samples has to be adjusted.

This is simply related to the fact that the length of the time value is related to 1/∆f .

On the other hand, if a bad connector or cable damage needs to be located along the transmission

line, a high resolution in time is required. Thus, the VNA has to measure over a wide frequency span

(fmax). Obviously, we would like to always use both a high frequency span and a close spacing of

the samples in the frequency domain, but there are practical limitations: namely, the number of data

points available. Usually in modern instruments the number of data points available amounts to 60000
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(a) (b)

Fig. 33: Sampling of frequency points in the different operating modes: (a) low-pass mode; (b) bandpass

mode.

and, depending on the application, compromises have to be accepted and a preference according to the

criteria mentioned above given.

When using the time-domain option of the vector network analyser there are two basic modes

available: the ‘low-pass’ mode and the ‘bandpass’ mode. Both of these modes are briefly discussed in

the following sections.

9.3 ‘Low-pass mode’

In the low-pass mode, the basic discrete Fourier transformation algorithm is applied. This returns certain

constraints on the frequency-domain measurement of the DUT (Fig. 33a). The iDFT demands that the

starting frequency must always be 0 Hz (DC) and only equidistant frequency steps are allowed from

there. Since most VNAs cannot measure very low frequencies, the data points from DC to the mini-

mum measurable frequency are extrapolated mathematically. Data points for negative frequencies are

derived from the measured samples on the corresponding positive frequencies by complex conjugation.

Compared to the bandpass mode, this effectively doubles the number of data points available for the

calculation of the time trace. For this particular symmetry, the discrete Fourier transformation returns

a purely real-valued time trace. The practical time domain reflectometry (TDR) measurement routine

usually goes as follows:

1. The DUT is connected, the port and type of measurement are selected (transmission or reflection).

2. The frequency range of interest and the number of data points are entered (this relates to the time

domain by Table 3)

3. After pushing the soft key, ‘set frequency low-pass’5, the instrument will work out the exact fre-

quencies where it has to sample the DUT.

4. Once the sampling points are defined, the VNA has to be calibrated (open, short, load for reflection

measurements).

In the low-pass mode, the trace appearing on the screen for time domain reflectometry (TDR) and

time domain transmission (TDT) is basically equivalent to what is shown on a real-time or sampling

oscilloscope; see Section 9.8.

9.4 ‘Bandpass mode’

In the bandpass mode (Fig. 33b) the spectral lines (frequency-domain data points) need no longer be

equidistant to DC but just within the frequency range of interest (e.g. from fmin = 1.2 GHz to fmax =
1.5 GHz). The start and stop frequencies of the VNA can be chosen arbitrarily, which returns a high

degree of flexibility and is especially suited for measuring devices with a limited range of operating

frequencies (example: waveguide-mode reflectometry).

As already mentioned, the bandpass mode is the equivalent of a narrowband TDR (and also time-

domain transmission TDT) using the synthetic pulse technique. It permits the display of an impulse

5This soft key may appear with slightly different naming, depending on the definitions of the manufacturer.
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(a) (b)

Fig. 34: (a) Infinite frequency span. (b) Limited frequency span. The limited frequency span ∆f of

the VNA leads to distortions in the time-domain synthetic pulse measurement. The ideal response is

convoluted with a sinc function. Its characteristics depend on ∆f .

response only, since no extrapolated information on a DC component is available. In the measurements,

the position and size of perturbations along a transmission line (including waveguides) can be nicely

identified. Their characterization in terms of capacitive, inductive or resistive properties is possible, but

not straightforward [19]. More on the general properties and mathematical backgrounds of the low-pass

and bandpass modes can be found in [18, 20].

9.5 Windowing

As the VNA is only able to sample a limited frequency spectrum, starting at fmin and ending at fmax,

we start off with a spectrum clipped by a rectangular envelope. How this effects the time-domain data,

calculated through the iDFT, can be seen in Fig. 34.

An infinite spectrum with constant density (shown in Fig. 34a) leads to a Dirac-pulse function in

the time domain. The Dirac pulse contains by definition all frequency components with equal power. In

Fig. 34b, the spectrum is limited, for example, by the maximum measurable frequency of the VNA or

by some user settings. This can be expressed by multiplication of the ideal spectrum with a rectangular

function. The iDFT of a rectangular function with the width ∆f leads to a sinc function (also sometimes

denoted as a si function) in the time domain. This relation is shown in Eq. (36) and graphically in

Frequency domain ⇐⇒ Time domain (36)

rect

(

f

∆f

)

⇐⇒ sin(∆fπt)
πt = ∆f · sinc (∆fπt) . (37)

To alleviate the influence of the rectangular clipping of the spectrum, different kinds of weighting func-

tions are in use. They smoothly reduce the amplitude of the spectrum at fmin and fmax (bandpass mode)

but for fmax only in the low-pass mode. This helps to reduce strong sidelobes (ringing) in the time do-

main. However, the price to be paid for the reduced sidelobes is a wider main lobe (pulse length), thus

reducing the time resolution and the ability to distinguish between two closely spaced impulses. For the

user, a reasonable trading between those two parameters has to be done, depending on the requirements

of the particular measurement. The effect of some windows on main and sidelobes can be seen in Fig. 35.

9.6 Gating

The gating function of the VNA can be used to eliminate undesired parts of the time-domain signal,

provided they are reasonably well situated in the time-domain trace. As an example, the already men-

tioned cable, connecting the DUT to the VNA port, is assumed to have an internal irregularity at a certain

position.

By suitable selection of a time-domain gate (marked in Fig. 36 at the range of about t = 18 ns to

t = 26 ns), we are able to analyse the selected pulse only and are not bothered by multiple reflections and
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Fig. 35: Typical window functions to suppress strong sidelobes

other perturbations. Thus, by selecting and applying a gate, the time-domain trace outside the gate is set

to zero, eliminating undesired distortions. For transmission measurements, usually the first arriving pulse

in the time domain is selected, thus suppressing the effect of all multiple reflections and related signals.

For reflection measurements, the first or also later pulses in the time-domain pulse may be selected. Once

the gate has been applied, the transformation back to the frequency plane can be easily carried out and

we see in the display the S-parameters (frequency domain) of the time-gated signal.

However, when using the gating function, it should always be kept in mind that this operation is

non-linear. This implies that it may generate additional frequency components which were not present

in the original signal. As a general practical rule, the gate should not cut into a signal trace different from

zero.

9.7 Examples of synthetic pulse time-domain measurements

A collection of measurement examples of simple DUTs are shown in Fig. 37. In all cases depicted there,

the VNA is set up to measure the step response. The traces from top to bottom show:

1. Matched load (Z = ZC). As Γ is equal to zero, the response is zero over the whole time.

2. Moderate (resistive) mismatch (Z = 2ZC , e.g. 100 Ω in a 50 Ω system). For the first 200 ps, only

the well-matched cable is seen, then the mismatch with its associated reflection coefficient.

3. Capacitor. The TDR sees the capacitor in the first moment as a short circuit and terminates with

an exponential function in an open circuit, as the capacitor is charged.

4. Inductor. For the TDR, the inductor appears at t = 0 as an open circuit and terminates with an

exponential function in a short circuit, as the inductor starts conducting.
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Fig. 36: Only the signal in a certain time window is of interest. After selection, the FFT of this window

will be calculated. Here the real values of the synthetic impulse response are shown in a linear scale.

9.8 Comparison to real time-domain measurements

There is a wide range of application for these synthetic pulse time-domain techniques. A VNA in the

time-domain low-pass step mode has a very similar range of applications as a sampling oscilloscope.

However, it must always be kept in mind that carrying out a measurement in the frequency domain

and then going via iDFT or similar into the time domain implies strict linearity of the DUT. Thus, a

transient on a non-linear system such as the onset of oscillations on some microwave oscillator with

active elements after turn-on of the supply voltage would not return meaningful results when using

the synthetic pulse method. In other words, for highly non-linear and time-varying DUTs, real pulse

measurements are still indispensable, as in most of the air traffic radar systems, where we have linear but

time-varying conditions.

The dynamic range of a typical sampling oscilloscope is limited to about 60 to 80 dB with a

maximum input signal of 1 V and a noise floor around 0.1 to 1 mV (typical microwave oscilloscope).

The VNA can easily go beyond 100 dB for the same maximum level of the input signal of about +10

dBm (some VNAs allow 20 dBm). Both instruments are using basically the same kind of detector, either

a balanced mixer (four diodes) or the sampling head (two or four diodes), but the essential difference is

the noise floor and the average signal power arriving at the receiver. In the case of the VNA we have a

continuous-wave (CW) signal with bandwidth of a few Hz and thus can obtain with appropriate filtering

a very good signal to noise ratio6.

With the sampling oscilloscope we acquire data over a short time with a rather low repetition

rate (typically around 100 kHz to several MHz) and all the thermal noise power is spread over the full

frequency range (typically 20–50 GHz bandwidth). With this low average signal power (around a mi-

crowatt) the signal spectral density is orders of magnitude lower than in the case of the VNA (it acquires

signals continuously) and this finally explains the large difference in dynamic range (even without gain

switching).

6Remember that thermal noise is proportional to measurement bandwidth. Its density at room temperature is –174 dBm/Hz.
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Fig. 37: Examples of an arbitrary impedance, measured in TDR
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Fig. 38: Error model in a VNA. The parameters exx of the error network are determined by the calibration

procedure and used to determine the real result (ΓDUT) from the measured result (ΓM).

A more detailed discussion about time-domain reflectometry with vector network analysers can

be found in [20].

9.9 Calibration methods

Since even the hardware of a modern VNA is not perfect, we have to take into account that its internal

source is not matched perfectly to 50 Ω over the complete frequency range; also, its internal directional

couplers have a finite directivity, since there exists no ideal (infinite directivity) in reality. Furthermore,

we have to eliminate the effect of the frequency-dependent attenuation of the coaxial cable connecting

the DUT to the ports of the VNA.

There are several calibration procedures to eliminate all or some of the deficiencies mentioned

above. The easiest is the ‘response calibration’ often used for transmission measurement, rarely for

reflection. It consists essentially in connecting, for a transmission measurement, the two ends of the test

cables to each other and storing the amplitude and phase responses for the complete frequency range in

some memory. This reference trace may consist of several hundred or several thousand (according to the

parameters selected) complex data points. DUT measurement data is normalized to the stored reference

trace. In other words, for each frequency point, the measure of attenuation in dB of the test cable is

subtracted

S21resp. cal. =
S21measured

S21reference

, (38)

which is equivalent to a division in linear quantities. The phase is processed accordingly.

This very simple calibration procedure eliminates essentially the frequency-dependent losses and

phase-transfer functions of the test cables only. But, the cable and generator mismatch and finite direc-

tivity impact is still present.

A more sophisticated and widely applied calibration technique for reflection measurements is the

open, short and match technique. This technique covers the three independent error sources mentioned

above: finite directivity, generator mismatch and cable transfer function.

The VNA uses a internal error model, shown in Fig. 38. All the measured raw data the instrument

‘sees’ (ΓM) are affected by certain systematic errors, modelled via the four parameters of the error

network (e10, e00, e01, e11). It is assumed that they are in general complex and frequency dependent

with e10 = e01. Since it is possible with suitable calibration methods to make these parameters available,

the true value of the DUT (ΓDUT) can be calculated accordingly. In simple terms we need to carry out

three independent measurements for each frequency point, in order to be able to solve three coupled

equations with three complex unknowns.

These error terms represent the above-mentioned effects as shown in Table 4.

We determine the unknowns of the error network by using three different, but known, calibration
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Table 4: Interpretation of the error terms

Error term Interpretation

e10 Reflection tracking

e00 Directivity

e11 Test-port match

Fig. 39: S11 measurement of a 50 Ω termination with and without calibration. The calibration provides

20 dB improvement over this frequency band.

DUTs. These calibration DUTs do not need to be perfect, only the electromagnetic properties need

to be known with great precision. The tabulated complex and frequency-dependent S-parameters of

the calibration standards are provided by the manufacturer of this calibration hardware (they are often

referred to as a calibration kit), in electronic format.

They usually represent an open circuit, a short circuit and a match. In this way the VNA can

determine the frequency-dependent error model, which may be altered if different test cables are used

and correct further measurements accordingly. Now the ‘reference plane’ is moved to the end of the test

cables. Only the networks behind the reference plane will be taken into account for the measurement.

For example, shown in Fig. 39 is a measurement of S11 for a high-quality 50 Ω termination with

and without calibration. For an ideal termination, no reflection should be present. The effect of the

calibration in this case improves the measurement by 20 dB. In case of a short, the non-calibrated S11

response is typically a fraction of a dB up to a few dB below the 0 dB line (same for the open); after

calibration this error reduces to the range of several millidecibels.

So far, we have discussed the ‘response calibration’ and the complete one-port calibration. In

order to carry out completely error-corrected transmission measurements, we need the ‘full two-port

calibration’. In this case, the error model must be expanded to include errors at the receiving port,

requiring calibration of each port using three known loads in reflection. Also, for transmission, we need

two standards, i.e. the response measurement and the ‘isolation measurement’, which however may be

omitted.

For measurements on devices with standard connectors, calibration standards such as a termi-

nation, an open and a short circuit are available (shown in Fig. 40a). As already mentioned for the
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(a) (b)

Fig. 40: Typical calibration kits for a VNA: (a) manual (open, short, match); (b) electronic

calibration procedure for the reflection, the tabulated values, representing the electromagnetic properties

of the calibration standards, must be already programmed in the VNA or loaded in the instrument.

Obviously, the tabulated parameters of the calibration kit do not have an infinite frequency resolu-

tion. The instrument applies an interpolation procedure if the selected frequency points are not exactly

at the tabulated values of the calibration kit.

The calibration technique described above is widely used and well established in the measurement

field. However, it has one important disadvantage: it is tedious and time consuming, in particular for a

calibration of a multiport VNA. Already for a full two-port calibration, eight calibration measurements

are needed in order to satisfy the requirements for an eight-term error model. The manual connection

and de-connection of the calibration standards is time consuming, prone to errors and may be boring.

The situation becomes even worse when carrying out a full four-port calibration (32 connections and

de-connections of standards). For this reason, the electronic calibration kit method has been invented

and became very popular. In this case, each port is connected via a cable to the electronic calibration

box (shown in Fig. 40b), which switches the different standards automatically by communicating with

the VNA. With this method, a full four-port calibration takes less than a minute. Again, as in the manual

calibration method, the standards do not need to be perfect but well known, reproducible (switching) and

stable. More details can be found in [17, 18].

9.10 1 dB compression point

A single tone source is connected to the input of an amplifier and its intensity gradually increased versus

time. Monitoring the output of this amplifier, we notice a proportional dependence between input and

output powers for small signal levels. This proportionality is referred to as the linear gain factor. For

higher input signal levels, this will not hold any more since the amplifier is not a perfectly linear system.

A fraction of the output power will appear at different frequencies, which are harmonics of the input

signal. These are typically the second and third harmonics and the distortion is referred to an harmonic

distortion. In parallel, we can observe a compression of the gain for the fundamental signal. The actual

gain falls off below the small-signal gain (Fig. 41). When this deviation amounts to 1 dB, we have

reached the 1 dB compression point.

This compression is an important figure of merit, used to characterize the linearity of a system, in

particular the performance of small-signal and power amplifiers. This 1 dB compression point can easily

be measured with most VNAs by setting it to CW mode, i.e. choosing a single frequency and running a

power sweep. In the power sweep mode, the instrument displays exactly the situation shown in Fig. 41.
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Fig. 41: Definition of the 1 dB compression point for an amplifier: input power, where the output power

falls below 1 dB from its (linearly) predicted value.

10 INTRODUCTION TO THE SMITH CHART

The Smith chart is a very valuable and important tool that facilitates interpretation of S-parameter mea-

surements. This section will give a brief overview of why and more importantly of how to use the

chart. Its definition as well as an introduction of how to navigate inside the chart are illustrated. Useful

examples show the broad possibilities for use of the chart in a variety of applications.

10.1 Voltage standing wave ratio

With the equipment at hand today, it has become rather easy to measure the reflection factor Γ even for

complicated networks. In the ‘good old days’ though, this was done by measuring the electrical field

strength7 at a coaxial measurement line with a slit at different positions in the axial direction (Fig. 42).

A small electric field probe, protruding into the field region of the coaxial line near the outer conductor,

was moved along the line. Its signal was picked up and displayed on a microvoltmeter after rectification

via a microwave diode. While moving the probe, field maxima and minima as well as their position and

spacing could be found. From this the reflection factor Γ and the voltage standing wave ratio (VSWR or

SWR) could be determined using the following definitions:

– Γ is defined as the ratio of the electrical field strength E of the reflected wave over the forward-

travelling wave:

Γ =
E of reflected wave

E of forward-travelling wave
. (39)

– The VSWR is defined as the ratio of maximum to minimum measured voltages:

VSWR =
Umax

Umin

=
1 + |Γ|
1− |Γ| . (40)

7The electrical field strength was used, since it can be measured considerably more easily than the magnetic field strength.
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DUT

from

generator

movable electric field probe

Umin

Umax

Fig. 42: Schematic view of a measurement set-up used to determine the reflection coefficient as well as

the voltage standing wave ratio of a device under test (DUT) [21].

Although today these measurements are far easier to conduct, the definitions of the aforementioned

quantities are still valid. Also, their importance has not diminished in the field of microwave engineering

and so the reflection coefficient as well as the VSWR are still a vital part of the everyday life of a

microwave engineer be it for simulations or measurements.

11 DEFINITION OF THE SMITH CHART

The Smith chart [22] provides a graphical representation of Γ that permits the determination of quantities

such as the VSWR or the terminating impedance of a device under test (DUT). It uses a bilinear Moebius

transformation, projecting the complex impedance plane onto the complex Γ plane:

Γ =
Z − Z0

Z + Z0

with Z = R+ jX. (41)

As can be seen in Fig. 43, the half–plane with positive real part of impedance Z is mapped onto the

interior of the unit circle of the Γ plane.

11.1 Properties of the transformation

In general, this transformation has two main properties:

– generalized circles are transformed into generalized circles (note that a straight line is nothing else

than a circle with infinite radius and is therefore mapped as a circle in the Smith chart);

– angles are preserved locally.

Figure 44 illustrates how certain basic shapes transform from the impedance to the Γ planes.

11.2 Normalization

The Smith chart is usually normalized to a terminating impedance Z0 (= real):

z =
Z

Z0

. (42)

This leads to a simplification of the transform:

Γ =
z − 1

z + 1
⇔ z =

1 + Γ

1− Γ
. (43)
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Im (Γ)

Re (Γ)

X = Im (Z)

R = Re (Z)

Fig. 43: Illustration of the Moebius transform from the complex impedance plane to the Γ plane com-

monly known as Smith chart.

Im (Γ)

Re (Γ)

X = Im (Z)

R = Re (Z)

Fig. 44: Illustration of the transformation of basic shapes from the Z to the Γ planes

Although Z = 50 Ω is the most common reference impedance (characteristic impedance of coaxial ca-

bles) and many applications use this normalization, any other real and positive value is possible. There-

fore, it is crucial to check the normalization before using any chart.

Commonly used charts that map the impedance plane onto the Γ plane always look confusing at

first, as many circles are depicted (Fig. 45).
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Fig. 45: Example of a commonly used Smith chart

11.3 Admittance plane

The Moebius transform that generates the Smith chart also provides a mapping of the complex admittance

plane (Y = 1
Z or normalized y = 1

z ) into the same chart:

Γ = −y − 1

y + 1
= −Y − Y0

Y + Y0

= −1/Z − 1/Z0

1/Z + 1/Z0

=
Z − Z0

Z + Z0

=
z − 1

z + 1
. (44)

Using this transformation, the result is the same chart, but mirrored at the centre of the Smith chart (Fig.

46). Often both mappings, the admittance and the impedance planes, are combined into one chart, which

looks even more confusing. For reasons of simplicity all illustrations in this article will use only the

mapping from the impedance to the Γ planes.

12 NAVIGATION IN THE SMITH CHART

The representation of circuit elements in the Smith chart is discussed in this section starting with the

important points inside the chart. Then several examples of circuit elements will be given and their

representation in the chart will be illustrated.
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Im (Γ)

Re (Γ)

B = Im (Y )

G = Re (Y )

Γ = −Y−Y0

Y+Y0
with Y = G+ jB

Fig. 46: Mapping of the admittance plane into the Γ plane

Im (Γ)

Re (Γ)

matched load

short circuit open circuit

Fig. 47: Important points in the Smith chart

12.1 Important points

There are three important points in the chart:

1. Open circuit with Γ = 1, z → ∞.

2. Short circuit with Γ = −1, z = 0.

3. Matched load with Γ = 0, z = 1.

They all are located on the real axis at the beginning, the end and the centre of the circle (Fig. 47). The

upper half of the chart is inductive, since it corresponds to the positive imaginary part of the impedance.

The lower half is capacitive as it is corresponding to the negative imaginary part of the impedance.

Concentric circles around the diagram centre represent constant reflection factors (Fig. 48). Their

radius is directly proportional to the magnitude of Γ; therefore, a radius of 0.5 corresponds to reflection
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|Γ| = 1
|Γ| = 0.75
|Γ| = 0.5
|Γ| = 0.25
|Γ| = 0

Fig. 48: Illustration of circles representing a constant reflection factor

of 3 dB (half of the signal is reflected) whereas the outermost circle (radius = 1) represents full reflection.

Therefore, matching problems are easily visualized in the Smith chart, since a mismatch will lead to a

reflection coefficient larger than 0 (see Eq. (45)).

Power into the load = forward power - reflected power: P =
1

2

(

|a|2 − |b|2
)

=
|a|2
2

(

1− |Γ|2
)

. (45)

In Eq. (45), the European notation8 is used, where power =
|a|2
2 . Furthermore, (1− |Γ|2) corresponds to

the mismatch loss.

Although only the mapping of the impedance plane to the Γ plane is used, one can easily use it to

determine the admittance, since

Γ(
1

z
) =

1
z − 1
1
z + 1

=
1− z

1 + z
=

(

z − 1

z + 1

)

or Γ(
1

z
) = −Γ(z). (46)

In the chart this can be visualized by rotating the vector of a certain impedance by 180◦ (Fig. 49).

12.2 Adding impedances in series and parallel (shunt)

A lumped element with variable impedance connected in series is an example of a simple circuit. The

corresponding signature of such a circuit for a variable inductance and a variable capacitor is a circle.

Depending on the type of impedance, this circle is passed through clockwise (inductance) or anticlock-

wise (Fig. 50). If a lumped element is added in parallel, the situation is the same as for an element

connected in series mirrored by 180◦ (Fig. 51). This corresponds to taking the same points in the admit-

tance mapping. Summarizing both cases, one ends up with a simple rule for navigation in the Smith chart:

For elements connected in series use the circles in the impedance plane. Go clockwise for an added

inductance and anticlockwise for an added capacitor. For elements in parallel use the circles in the

admittance plane. Go clockwise for an added capacitor and anticlockwise for an added inductance.

This rule can be illustrated as shown in Fig. 52.

8The commonly used notation in the USA is power = |a|2. These conventions have no impact on S-parameters but they are

relevant for absolute power calculation. Since this is rarely used in the Smith chart, the definition used is not critical for this
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Fig. 49: Conversion of an impedance to the corresponding emittance in the Smith chart
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Fig. 50: Traces of circuits with variable impedances connected in series

12.3 Impedance transformation by transmission line

The S-matrix of an ideal, lossless transmission line of length l is given by

S =

[

0 e−jβl

e−jβl 0

]

, (47)

where β = 2π
λ is the propagation coefficient with the wavelength λ (λ = λ0 for ǫr = 1).

article.
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Fig. 51: Traces of circuits with variable impedances connected in parallel

When adding a piece of coaxial line, we turn clockwise on the corresponding circle leading to a

transformation of the reflection factor Γload (without line) to the new reflection factor Γin = Γloade−j2βl.

Graphically speaking, this means that the vector corresponding to Γin is rotated clockwise by an angle of

2βl (Fig. 53).

The peculiarity of a transmission line is that it behaves as an inductance, a capacitor or a resistor

depending on its length. The impedance of such a line (if lossless) is given by

Zin = jZ0 tan(βl). (48)

The function in Eq. (48) has a pole at a transmission line length of λ/4 (Fig. 54). Therefore, adding a

transmission line with this length results in a change of Γ by a factor −1:

Γin = Γloade−j2βl = Γloade−j2( 2π
λ
)l l=λ

4= Γloade−jπ = −Γload. (49)

Again, this is equivalent to changing the original impedance z to its admittance 1/z or the clockwise

movement of the impedance vector by 180◦. Especially when starting with a short circuit (at −1 in the

Smith chart), adding a transmission line of length λ/4 transforms it into an open circuit (at +1 in the

Smith chart).

12.4 Examples of different two-ports

In general, the reflection coefficient when looking through a two-port Γin is given via the S-matrix of the

two-port and the reflection coefficient of the load Γload:

Γin = S11 +
S12S21Γload

1− S22Γload

. (50)

In general, the outer circle of the Smith chart as well as its real axis are mapped to other circles and lines.
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Fig. 52: Illustration of navigation in the Smith chart when adding lumped elements

0
.
0
0

0
.
0
1

0
.
0
2

0
.
0
3

0
.
0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0.
09

0.1
0

0.11
0.12 0.13

0.14

0.15

0.16

0
.1
7

0
.1
8

0
.1
9

0
.2
0

0
.
2
1

0
.
2
2

0
.
2
3

0
.
2
4

0
.
2
5

0
.
2
6

0
.
2
7

0
.
2
8

0
.
2
9

0
.3
0

0
.3
1

0
.3
2

0
.3
3

0.34

0.35

0.36
0.370.38

0.39

0.4
0

0.
41

0
.4
2

0
.4
3

0
.4
4

0
.4
5

0
.
4
6

0
.
4
7

0
.
4
8

0
.
4
9

0
.
0
0

0
.
0
1

0
.
0
2

0
.
0
3

0
.
0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0.
09

0.1
0

0.11
0.12 0.13 0.14

0.15

0.16

0
.1
7

0
.1
8

0
.1
9

0
.2
0

0
.
2
1

0
.
2
2

0
.
2
3

0
.
2
4

0
.
2
5

0
.
2
6

0
.
2
7

0
.
2
8

0
.
2
9

0
.3
0

0
.3
1

0
.3
2

0
.3
3

0.34

0.35
0.36

0.370.38
0.39

0.4
0

0.
41

0
.4
2

0
.4
3

0
.4
4

0
.4
5

0
.
4
6

0
.
4
7

0
.
4
8

0
.
4
9

0
1
0

2
0

3
0

4
0

5
0

60

70

80
90

100

11
0

12
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

-
1
7
0

-
1
6
0

-
1
5
0

-
1
4
0

-1
3
0

-1
20

-1
10

-100 -90
-80

-70

-60

-5
0

-
4
0

-
3
0

-
2
0

-
1
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1
.
0

1
.
2

1
.
4

1
.
6

1
.
8

2
.
0

3
.
0

4
.
0

5
.
0

1
0

2
0

5
0

0.2

0.2

0.4

0.4

0.
6

0.6

0.
8

0.8

1

1

10.9
0.8

0.
7

0.
6

0
.5

0
.4

0
.3

0
.
2

0
.
1

0

2

3

4

5

1
0

2
0

5
0

1.2
1.4

1.6

1
.8

0
.
0
5

0
.
1
5

-1-0.9
-0.

8
-0

.7

-0
.6

-0
.5

-0
.4

-
0
.3

-
0
.
2

-
0
.
1

-2

-
3

-
4

-
5

-
1
0

-
2
0

-
5
0

-1.2

-1.4

-1.6

-1
.8

-
0
.
0
5

-
0
.
1
5

Γload

2βl

Γin

Fig. 53: Illustration of adding a transmission line of length l to an impedance

In the following three examples, different two-ports are given along with their S-matrix, and their

representation in the Smith chart is discussed. For illustration, a simplified Smith chart consisting of the

outermost circle and the real axis only is used for reasons of simplicity.

12.4.1 Transmission line λ/16

The S-matrix of a λ/16 transmission line is

S =

[

0 e−jπ
8

e−jπ
8 0

]

(51)

with the resulting reflection coefficient

Γin = Γloade−j π
4 . (52)
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Im (Z)

Re (Z)

inductive

capacitive

λ
4

λ
2

Fig. 54: Impedance of a transmission line as a function of its length l

z = 0

z = 1

z = ∞

increasing
term

inating

resistor

Fig. 55: Rotation of the reference plane of the Smith chart when adding a transmission line

This corresponds to a rotation of the real axis of the Smith chart by an angle of 45◦ (Fig. 55) and hence a

change of the reference plane of the chart (Fig. 55). Consider, for example, a transmission line terminated

by a short and hence Γload = −1. The resulting reflection coefficient is then equal to Γin = e−jπ
4 .

12.4.2 Attenuator 3 dB

The S-matrix of an attenuator is given by

S =

[

0
√
2
2√

2
2 0

]

. (53)

The resulting reflection coefficient is

Γin =
Γload

2
. (54)

In the Smith chart, the connection of such an attenuator causes the outermost circle to shrink to a radius

of 0.59 (Fig. 56).

12.4.3 Variable load resistor

Adding a variable load resistor (0 < z < ∞) is the simplest case that can be depicted in the Smith chart.

It means moving through the chart along its real axis (Fig. 57).

9An attenuation of 3 dB corresponds to a reduction by a factor 2 in power.
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z = 0 z = 1 z = ∞

Fig. 56: Illustration of the appearance of an attenuator in the Smith chart

z = 0
z = 1

z = ∞

Fig. 57: A variable load resistor in the simplified Smith chart. Since the impedance has a real part only,

the signal remains on the real axis of the Γ plane.

Junction between a

50Ω and a 75Ω cable

(infinitely short cables)

a1

b1

a2

b2

Fig. 58: Illustration of the junction between a coaxial cable with 50 Ω characteristic impedance and

another with 75 Ω characteristic impedance, respectively. Infinitely short cables are assumed – only the

junction is considered.

13 EXAMPLES FOR APPLICATIONS OF THE SMITH CHART

In this section two practical examples of common problems are given, where the use of the Smith chart

greatly facilitates their solution.

13.1 A step in characteristic impedance

Consider a junction between two infinitely short cables, one with a characteristic impedance of 50 Ω and

the other with 75 Ω (Fig. 58).

The waves running into each port are denoted with ai (i = 1, 2), whereas the waves coming out of
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Fig. 59: Visualization of the two-port formed by the two cables of different characteristic impedances

every point are denoted with bi. The reflection coefficient for port 1 is then calculated as

Γ1 =
Z − Z1

Z + Z1
=

75− 50

75 + 50
= 0.2. (55)

Thus, the voltage of the reflected wave at port 1 is 20% of the incident wave (a2 = a1 · 0.2) and the

reflected power at port 1 is 4%10. From conservation of energy, the transmitted power has to be 96% and

it follows that b22 = 0.96.

A peculiarity here is that the transmitted energy is higher than the energy of the incident wave,

since Eincident = 1, Ereflected = 0.2 and therefore Etransmitted = Eincident + Ereflected = 1.2. The transmis-

sion coefficient t is thus t = 1 + Γ. Also, note that this structure is not symmetric (S11 6= S22), but only

reciprocal (S21 = S12).

The visualization of this structure in the Smith chart is easy, since all impedances are real and thus

all vectors are located on the real axis (Fig. 59).

13.2 Determination of the Q factors of a cavity

One of the most common cases where the Smith chart is used is the determination of the quality factor

of a cavity. This section is dedicated to the illustration of this task.

A cavity can be described by a parallel RLC circuit (Fig. 60), where the resonance condition is

given when

ωL =
1

ωC
. (56)

This leads to the resonance frequency of

ωres =
1√
LC

or fres =
1

2π

1√
LC

. (57)

The impedance Z of such an equivalent circuit is given by

Z(ω) =
1

1
R + jωC + 1

jωL

. (58)

10Power is proportional to Γ
2 and thus 0.22 = 0.04.
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ZG

R L C Vbeam

V0

Zinput Zshunt

Fig. 60: The equivalent circuit that can be used to describe a cavity. The transformer is hidden in the

coupling of the cavity (Z ≈ 1 MΩ, seen by the beam) to the generator (usually Z = 50 Ω).

Re (Z)

Im (Z)

45◦

f = f −
(−3dB)

f = f(res)

f = f +
(−3dB)

f = 0

f → ∞

Fig. 61: Schematic drawing of the 3 dB bandwidth in the impedance plane

The 3 dB bandwidth ∆f refers to the points where Re(Z) = Im(Z), which correspond to two

vectors with an argument of 45◦ (Fig. 61) and an impedance of |Z(−3 dB)| = 0.707R = R/
√
2.

In general, the quality factor Q of a resonant circuit is defined as the ratio of the stored energy W
over the energy dissipated in one cycle P :

Q =
ωW

P
. (59)

The Q factor for a resonance can be calculated via the 3 dB bandwidth and the resonance frequency:

Q =
fres

∆f
. (60)

For a cavity, three different quality factors are defined:

– Q0 (unloaded Q): Q factor of the unperturbed system, i.e. the stand-alone cavity;

– QL (loaded Q): Q factor of the cavity when connected to generator and measurement circuits;

– Qext (external Q): Q factor that describes the degeneration of Q0 due to the generator and diag-

nostic impedances.
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Fig. 62: Illustration of how to determine the different Q factors of a cavity in the Smith chart

All these Q factors are connected via a simple relation:

1

QL

=
1

Q0
+

1

Qext

. (61)

The coupling coefficient β is then defined as

β =
Q0

Qext

. (62)

This coupling coefficient is not to be confused with the propagation coefficient of transmission lines,

which is also denoted as β.

In the Smith chart, a resonant circuit shows up as a circle (Fig. 62, circle shown in the detuned

short position). The larger the circle, the stronger the coupling. Three types of coupling are defined

depending on the range of beta (= size of the circle, assuming the circle is in the detuned short position):

– Undercritical coupling (0 < β < 1): the radius of the resonance circle is smaller than 0.25. Hence,

the centre of the chart lies outside the circle.

– Critical coupling (β = 1): the radius of the resonance circle is exactly 0.25. Hence, the circle

touches the centre of the chart.

– Overcritical coupling (1 < β < ∞): the radius of the resonance circle is larger than 0.25. Hence,

the centre of the chart lies inside the circle.

In practice, the circle may be rotated around the origin due to the transmission lines between the resonant

circuit and the measurement device.

From the different marked frequency points in Fig. 62 the 3 dB bandwidth and thus the quality

factors Q0, QL and Qext can be determined as follows:

– The unloaded Q can be determined from f5 and f6. The condition to find these points is Re(Z) =

Im(Z) with the resonance circle in the detuned short position.

– The loaded Q can be determined from f1 and f2. The condition to find these points is |Im(S11)| →
max.

48



– The external Q can be calculated from f3 and f4. The condition to determine these points is Z =

±j.

To determine the points f1 to f6 with a network analyser, the following steps are applicable:

– f1 and f2: set the marker format to Re(S11) + j Im(S11) and determine the two points where

Im(S11) = max.

– f3 and f4: set the marker format to Z and find the two points where Z = ± j.

– f5 and f6: set the marker format to Z and locate the two points where Re(Z) = Im(Z).

14 SUMMARY

In the present article several basic signal receiving techniques and devices used for this purpose were

described. Advantages of several measurements using spectrum analysers and network analysers were

presented. In the last part the definition of the Smith chart and its usage were discussed with sev-

eral examples. All this information can give a good overview needed in the practical part of the CAS

intermediate-level RF course. Within these practical exercises six test stages equipped with the most

modern spectrum analysers and network analysers were prepared.

The following experiments were proposed:

14.1 Spectrum analyser test stand 1:

– Measurements of several types of modulation (AM, FM and PM) in the time and frequency do-

mains.

– Superposition of AM and FM spectra (unequal carrier sidebands).

– Concept of a spectrum analyser: the superheterodyne method. Practice all the different settings

(video bandwidth, resolution bandwidth etc). Advantage of FFT spectrum analysers.

14.2 Spectrum analyser test stand 2:

– Measurement of the TOI point of some amplifiers (intermodulation tests).

– Concept of noise-figure and noise-temperature measurements, testing a noise diode, the basics of

thermal noise.

– Electromagnetic compatibility (EMC) measurements (e.g. analyse your cell-phone spectrum).

– Non-linear distortion in general concept and application of vector spectrum analysers, spectrogram

mode.

– Measurement of the RF characteristic of a microwave detector diode (output voltage versus input

power ... transition between regimes output voltage proportional to input power and output voltage

proportional to input voltage).

14.3 Spectrum analyser test stand 3:

– Concept of noise-figure and noise-temperature measurements, testing a noise diode, the basics of

thermal noise.

– Noise-figure measurements on amplifiers and also attenuators.

– The concept and meaning of excess noise ratio (ENR) numbers.

– Noise temperature of the fluorescent tubes in the room using a satellite receiver.
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14.4 Network analyser test stand 1:

– Calibration of the vector network analyser.

– Navigation in the Smith chart.

– Application of the triple-stub tuner for matching.

– Measurements of the light velocity using a trombone (constant-impedance adjustable coaxial line)

in the frequency domain.

– N -port (N = 1–4) S-parameter measurements for different reciprocal and non-reciprocal RF

components.

– Self-made RF components: calculate, build and test your own attenuator (and then take it home).

14.5 Network analyser test stand 2:

– Measurements of the light velocity using a trombone (constant-impedance adjustable coaxial line)

in the time domain.

– Two-port measurements for active RF components (amplifiers).

– A 1 dB compression point (power sweep).

– Beam transfer impedance measurements with the wire (button pick-up, stripline pick-up).

14.6 Network analyser test stand 3:

– Measurements of the characteristic cavity features (Smith-chart analysis).

– Cavity perturbation measurements (bead pull).

– Perturbation measurements using rectangular waveguides.

– Standing wave ratio (SWR) measurements using a waveguide measurement line and movable

probe.
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15 APPENDIX: MEANING OF THE RULERS BELOW THE SMITH CHART

How to use the rulers that are often plotted underneath the Smith chart?

A commonly used set of rulers can be found below the Smith chart is shown in Fig. 63. There

are four rulers, some with an upper and lower part, to quickly estimate and compare some important

properties in terms of modulus values. For the following discussion lets split the upper three rulers at the

line marked CENTER to a left and right part, each to be discussed separately. These rulers start at the

CENTER, referring to the center of the Smith chart, and end at the left or right boundary, referring to the

circular boundary of the Smith chart. The 4th ruler at the bottom is different, it starts at the left boundary

ORIGIN and ends at the right boundary.

Fig. 63: Example for a set of rulers that can be found underneath the Smith chart (please note corrections

in respect to the RF-course printouts)

First ruler, left/upper part in Fig. 64 is marked as SWR which mean actually VSWR, i.e. voltage

standing wave ratio. It ranges between one – for the matched case (center of the Smith chart) and infinity

– for total reflection (boundary of the Smith chart), respectively. The upper part is in linear scale, the

lower part of this ruler is in dB, noted as dBS (dB referred to Standing Wave Ratio). Example: SWR =

10 corresponds to 20 dBS, SWR = 100 corresponds to 40 dBS [voltage ratios, not power ratios].
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Fig. 64: Left part of the rulers usually plotted underneath the Smith Chart

Second ruler, left/upper part, marked as RTN.LOSS i.e. return loss in dB. This indicates the amount

of reflected wave expressed in dB. Thus, in the center of SC nothing is reflected and the return loss is

infinite. At the boundary we have full reflection, thus return loss is 0 dB. The lower part of the scale

denoted as RFL.COEFF.P is a reflection coefficient in terms of POWER (proportional |Γ|2). If there is

no reflected power for the matched case locus is in the center of the Smith chart (SC). On the contrary, if

normalized reflected power is equal to 1 locus is at the boundary.

Third ruler, left, marked as RFL.COEFF,E or I gives us the absolute value of the reflection coeffi-

cient in linear scale. Note that since we have the modulus we can refer it both to voltage or current as we

have omitted the sign. Obviously in the center the reflection coefficient is zero, at the boundary it is one.

The fourth is a Voltage transmission coefficient. Note that the modulus of the voltage (and current)

transmission coefficient has a range from zero, i.e. short circuit, to +2 (open = 1+Γ with Γ = 1). This

ruler is only valid for Zload = real, i.e. the case of a step in characteristic impedance of the coaxial line.

Third ruler, right (see Fig. 65) marked as TRANSM.COEFF.P refers to the transmitted power as a

function of mismatch and displays essentially the relation Pt = 1 − |Γ|2. Thus, in the center of the SC

full match, all the power is transmitted. At the boundary we have total reflection and e.g. for a Γ value

of 0.5 we see that 75 % of the incident power is transmitted.

Fig. 65: Right part of the rulers usually plotted underneath the Smith Chart

Second ruler, right/upper part, denoted as RFL.LOSS in dB denotes reflection loss. This ruler

refers to the loss in the transmitted wave, and should not be confounded with the return loss referring to

the reflected wave. It displays the relation Pt = 1 − |Γ|2 in dB. This ruler is nowadays rather not more

in use.

Let us analyse an example from Fig. 66: |Γ| = 1/
√
2 = 0.707 , transmitted power = 50 % thus
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loss = 50 % = 3 dB. Note that in the lowest ruler the voltage of the transmitted wave (Zload = real) would

be Vt = 1.707 = 1 + 1/
√
2 if referring to the voltage.

Fig. 66: Example for |Γ| = 1/
√
2 = 0.707 and 50 % of transmitted power (i.e. 3 dB loss), see description

in text

Finally, the First ruler, right/upper part, denoted as ATTEN. in dB assumes that one is measuring

an attenuator or a lossy line which itself is terminated by an open or short circuit (full reflection). Thus

the wave is traveling twice through the attenuator (forward and backward). The value of this attenuator

can be between zero and some very high number corresponding to the matched case. The lower scale of

first ruler displays the same situation just in terms of VSWR.

For the next example see Fig. 67: an 10 dB attenuator attenuates the reflected wave by 20 dB going

forth and back and we get a reflection coefficient of Γ = 0.1. This correspond to the reflection of 10 %

in voltage. Another example is 3 dB attenuator: for the forth and back transmission it gives 6 dB which

correspond to half of the voltage. Table 5 is reprinted from an original paper of Phillip H. Smith [22] and

summarizes reflection formulas discussed above.

Fig. 67: Example for 10 dB and 3 dB attenuator, see description in text
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Table 5: Reflection formulas

function traveling waves reflection coefficient standing waves

VOLTAGE REFL. COEFF. r
i Γ S−1

S+1

POWER REFL. COEF. ( ri )
2 Γ2 (S−1

S+1)
2

RETURN LOSS [dB] 10 · log( ir )2 −10 · log(Γ2) −10 · log(S−1
S+1)

2

REFLECTION LOSS [dB] 10 · log( i2

i2−r2
) −10 · log(1− Γ2) −10 · log[1− (S−1

S+1)
2]

STDG. WAVE LOSS COEF. 1− [(i+r)/(i−r)]2

2[(i+r)/(i−r)]
1−Γ+Γ2−Γ3

1−Γ−Γ2+Γ3

1+S2

2S

STDG. WAVE RATIO [dB] 20 · log( i+r
i−r ) 20 · log(1+Γ

1−Γ) 20 · log(S)

MAX. OF STDG. WAVE ( i+r
i−r )

1/2 (1+Γ
1−Γ)

1/2
√
S

MIN. OF STDG. WAVE ( i−r
i+r )

1/2 (1−Γ
1+Γ)

1/2 1√
S

STANDING WAVE RATIO i+r
i−r

1+Γ
1−Γ S

ATTENUATION [dB] −10 · log( ri ) −10 · log(Γ) −10 · log(S−1
S+1)

whereas: i = incident wave amplitude, r = reflected wave amplitude, Γ = reflection coefficient,

S ≡ SWR = voltage standing wave ratio.
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