UniMon
Gateware Documentation

Version 1.0

February 9, 2023

René Geilller
r.geissler@gsi.de

GSI Helmholtzzentrum fiir Schwerionenforschung GmbH

Contents

Documentation formats
Resources
1 Introduction

2 Common FPGA based projects documentation

2.1 Common monitoring and control features oL Lo
2.2 FPGA ODbSErver i vttt i e e e e e
2.3 Build flow and simulationo Lo
2.4 Helperscripts
2.5 Continuous integration environment Lo Lo
2.6 Programming and hardware configuration L Lo Lo

3 Peripheral devices

3.1 Analog Devices LTC2323-16 ADC e
3.2 EXAR XRAI405 GPIOexpander o i i
32.1 ADCinputselection L e
322 Gainselection

4 Gateware implementation

4.1 Clocking L
4.1.1 PClereferenceclock
42 ReSetS e e e e e e e e
421 PLLnotinlock
422 PClereset
423 Resetbutton L e e e
43 Dataflowdiagram
44 PClelnterface e e e e e e e e e e e e e
4.5 SDRAMInterface e e e e e e e e e e e e e
4.6 ODBSEIVEr o i it e e e e e e e e e e e e e e

5 Gateware software interface

5.1 PCleDriver e e
5.1.1 Reading fromaregister e
5.1.2 Writingtoaregister L e e
5.1.3 Readingofscopedata
52 SCoOpememory e e
53 Registermap L.
53,1 Status re@isters Lo e e e e e e e e e e
5.3.2 Configuration re@isterso e e e e
References

Documentation formats

There are three available documentation formats:
o Markdown: https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/README.md
o DokuWiki: https://www-bd.gsi.de/dokuwiki/doku.php?id=ds:projects:unimon: :gateware

o LaTeX (PDF):https://wuw-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:unimon:gateware:
UniMon_Gateware_Documentation.pdf

All documentation is based on the content of README.md, which is the most up to date format. The DokuWiki and the
PDF version have been generated automatically, but will not be updated automatically.

Up to date DokuWiki and PDF versions can be downloaded from the CI/CD section:
https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/pipelines

https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/README.md
https://www-bd.gsi.de/dokuwiki/doku.php?id=ds:projects:unimon::gateware
https://www-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:unimon:gateware:UniMon_Gateware_Documentation.pdf
https://www-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:unimon:gateware:UniMon_Gateware_Documentation.pdf
https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/pipelines

Resources

The code of this project and also the source of this documentation are under version control in a Git repository whose
upstream is:

https://git.gsi.de/BEA_HDL/UniMon_Gateware.

The relevant branch is master.

Common code is included as a Git submodule of the main Git repository. The upstream of the submodule is:
https://git.gsi.de/BEA_HDL/FPGA_Common.
The relevant branch is master.

Installation scripts to set up a Gitlab runner for continuous integration including all necessary software to build the gate-
ware can be found in a Git repository whose upstream is:
https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7.

The relevant branch is master.

https://git.gsi.de/BEA_HDL/UniMon_Gateware
https://git.gsi.de/BEA_HDL/FPGA_Common
https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7

1 Introduction

This document describes the gateware (= FPGA firmware) implementation of the UniMon Tank Signal Monitor.

The system uses 4 I0xOS ADC_3117 FMC cards which are mounted on two OpenHardware AFC v4.0 FMC carriers.
Each of the FMCs provides 20 ADCs with a resolution of 16 bits. The sampling rate of the ADCs is adjustable between 1
kHz and 5 MHz. Each ADC input is individually configurable as a differential or single ended and different gain settings
are available.

Eigentum der GSHDarmstadt

12288

Figure 1.1: UniMon crate in the HKR

The gateware of each AFC stores the data stream of respectively 40 ADCs to a ring buffer, from which it can be read via
PCle.

2 Common FPGA based projects documentation

This project incorporates the code from the FPGA_Common Git repository which is used in multiple projects. The docu-
mentation of the common features can be found here:

2.1 Common monitoring and control features

Documentation about the register bank, the architecture information storage and the observer can be found here:
https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

2.2 FPGA Observer

There is a expert GUI that can be used together with multiple projects:
https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer

2.3 Build flow and simulation

You can find instructions on how to build and simulate the gateware here:
https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation

2.4 Helper scripts

You can find usefull scripts here:
https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts

2.5 Continuous integration environment

Information about the continuous integration setup can be found here:
https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment

2.6 Programming and hardware configuration

You can find instructions on how to program the FPGA and configure other hardware here:
https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration

https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features
https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer
https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation
https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts
https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment
https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration

3 Peripheral devices

The gateware communicates with the following devices on each of the IOxOS ADC_3117 FMC cards:

e 10 * Analog Devices LTC2323-16 dual ADC
o 10 * EXAR XRA1405 GPIO expander

3.1 Analog Devices LTC2323-16 ADC

Each LTC2323-16 consists of two ADCs that are sampled in parallel.

The sampling frequency is adjustable in the range between 1 kHz and 5 MHz.

Each ADC provides a differential input pair and is directly controlled by the FPGA without any external clock.

The FPGA has to read the samples at a clock speed of 105 MHz. The sampling rate of the ADCs is controlled by the
distance between the so called conversion pulses that have to be generated by the FPGA [1].

Due to this clock generation logic of the ADCs, the sampling frequency can be set with a certain granularity described in
chapter 77.

3.2 EXAR XRA1405 GPIO expander

The GPIO expanders are used for multiple purposes. Among these is the control of the inputs to each ADC.

3.2.1 ADC input selection
There are dedicated switch devices in front of each of the differential ADC inputs, which can be controlled independently.
The following input settings are available:

« differential p / n input pin

o ground

» configurable calibration voltage (not implemented yet)

o fixed calibration voltage of + 4.128 V

3.2.2 Gain selection

The gain of each differential ADC input pair can be controlled by a dedicated fixed gain amplifier device which can be
programmed to an amplifications of 1, 2, 5 or 10.

In front of each ADC input there is an attenuator with a fixed gain of 0.4.

In total the following gains are available [2]:

amplifier gain | input range ‘ resolution per LSB

1 +/-10.24 V 312.5 uv
2 +/-5.12V 156.25 uv
5 +/-2.048 V 62.5 uv

10 +/-1.024 V 31.25 uv

4 Gateware implementation

4.1 Clocking

The gateware uses only one primary clock.

4.1.1 PCle reference clock

The PCle reference clock has a nominal frequency of 100 MHz and feeds the reference clock input of the PCle IP core by
Xilinx, which contains a PLL producing a 125 MHz output clock for the AXIT interface named clk_125_pcie_axi.

clk_125_pcie_axi drives a MMCM to generate:

o clk_100, 100 MHz, this is the main processing clock of the design
e c¢lk_200,200 MHz, used for the SDRAM interface IP core by Xilinx
o clk_50, 50 MHz, used for generating a 210 MHz clock for the ADC interface

The SDRAM interface IP core contains a MMCM which generates a 100 MHz clock named clk_100_sdram for the AXI
interface.

4.2 Resets

4.2.1 PLL not in lock

As long as the PLL in the MMCM producing the main processing clock clk_100 is not yet in lock, the design is held in
reset. After this the lock should be stable until the next power cycle.

4.2.2 PCle reset

The design will be reset whenever the PCle connection is re-initialized. This happens e.g. when the FEC is rebooted.

4.2.3 Reset button

There is a push button labeled RST at the center of the AFC front panel which is connected to the microcontroller for the
MMC firmware. The OpenMMC firmware forwards a button press with a duration of at least two seconds to the FPGA
pin AG26 as an active low signal to initiate a reset of the gateware.

Resetting the FPGA leads to the loss of the PCle connection. To re-enable the connection, the FEC has to be rebooted.

4.3 Data flow diagram

Legend:
csen PCle
—> AXI Interface
—» AXI Stream Register Bank
s Block RAM protocol and gateware Block
. o information RAM
- stream with valid signal storage
—> monitoring and control / |
AXI-Block .
SDRAM AXI > < > Register
Interface B > Interconnect el Bank
converter
A
Scope
AXI
Data
Mover
Control AXIS
Logic FIFO
wn
g '
= Timestamp
=
Y L
FMC 0 FMC 1
interface interface
ADC GPIO ADC GPIO
Data fed | Expander Data affped | Expander
Interface Programmer Interface Programmer

Figure 4.1: Simplified data flow diagram

Figure 4.1 shows a simplified data flow diagram. For simplicity, some features are not included in the diagram:

o processing clocks and clock domain crossings

e resets

e LEDs

» read out logics of FPGA serial number and build time stamp

o data width conversions of AXI connections

4.4 PCle Interface

This gateware uses the Xilinx IP core DMA/Bridge Subsystem for PCI Express with the following configuration:

o PCle speed: 5 GTransfers/s
o AXI clock frequency: 125 MHz

« reference clock frequency: 100 MHz

The PCle reference clock is routed to the FPGA via the MMC firmware and is configured to be driven by the 100 MHz
FCLKA clock coming from the AMC connector.

4.5 SDRAM interface
For the communication with the SDRAM, an IP core by Xilinx is used. The clock frequency of the SDRAM interface’s

AXI bus is 100 MHz, but has a different source so that an AXI clock converter is used to connect it to the rest of the AXI
infrastructure which is clocked at the main processing clock of 100 MHz.

4.6 Observer

This project incorporates the observer interface from the FPGA_Common Git submodule (see https://git.gsi.de/
BEA_HDL/FPGA_Common#13-observer).

The following signals are connected to the observer inputs:

value | input vector(64 bits) valid signal
0 | corrected ADC data of ADCs 0 - 3 corrected ADC data valid (0)
1 | corrected ADC data of ADCs 4 -7 corrected ADC data valid (0)
2 | corrected ADC data of ADCs 8 - 11 corrected ADC data valid (0)
3 | corrected ADC data of ADCs 12 - 15 | corrected ADC data valid (0)
4 | corrected ADC data of ADCs 16 - 19 | corrected ADC data valid (0)
5 | corrected ADC data of ADCs 20 - 23 | corrected ADC data valid (1)
6 | corrected ADC data of ADCs 24 - 27 | corrected ADC data valid (1)
7 | corrected ADC data of ADCs 28 - 31 | corrected ADC data valid (1)
8 | corrected ADC data of ADCs 32 - 35 | corrected ADC data valid (1)
9 | corrected ADC data of ADCs 36 - 39 | corrected ADC data valid (1)
10 | value of the eight MLVDS inputs 1

The rest of the multiplexer inputs are connected to zero.

10

https://git.gsi.de/BEA_HDL/FPGA_Common#13-observer
https://git.gsi.de/BEA_HDL/FPGA_Common#13-observer

5 Gateware software interface

The communication between the gateware and the software takes place via a PCle driver by Xilinx called XDMA. There is
only one PCle Bar in use in the gateware which maps the memory space to different physical memories on the AMC board.

The following mapping is applied:

address size | memory type | description
0x00000000 2 kiB | Flip Flops inside FPGA, for registers
0x00004000 | 16 kiB | Block RAM inside FPGA, for architecture information
0x00010000 | 64 kiB | Block RAM inside FPGA, for observer
0x80000000 2 GiB | SDRAM external, for scope data

Table 5.1: Memory mapping

The architecture information and the observer are documented here:
https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

5.1 PCle Driver

Read and write accesses are mapped to virtual file accesses:

e /dev/xdmaO_c2h_O for read accesses

e /dev/xdmaO_h2c_0 for write accesses

5.1.1 Reading from a register
Example in C:

uint32_t address = 0x00000000;

int fd = open("/dev/xdmaO_c2h_0", O_RDWR);
Iseek (fd, address, SEEK_SET);

uint64_t value;

read (fd, &value, sizeof(uint64_t));

5.1.2 Writing to a register

It is important to write the whole register width of 64 bits. If a register has less than 64 bits, the unused MSBs have to be
written to any value. 32 bit write accesses will not have any effect.

Example in C:

uint64 _t value = 42;

uint32_t address = 0x00000400;

int fd = open("/dev/xdmaO_h2c_0", O_RDWR);
Iseek (fd, address, SEEK_SET);

write (fd, &value, sizeof(uint64_t));

11

https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

5.1.3 Reading of scope data
Example in C:

uint32_t address = 0x80000000;

int fd = open("/dev/xdmaO_c2h_0", O_RDWR);
Iseek (fd, address, SEEK_SET);

char data[1024];

read (fd, data, 1024);

This example reads 1024 bytes of data to an array. For bigger data blocks, instead of using an array, you will probably
prefer a dynamically allocated memory region.

5.2 Scope memory

The complete SDRAM is used for the scope memory. The ADC data is stored in the following format:

address | bits | radix description
0x80000000 16 | signed ADC 0 data (time = 0)
0x80000002 16 | signed ADC 1 data (time = 0)

0x8000004E 16 | signed ADC 39 data (time = 0)
0x80000050 64 | unsigned | timestamp (time = 0)

0x80000058 8 | none state of the MLVDS lines (time = 0)
0x80000059 312 | none unused

0x80000080 16 | signed ADC 0 data (time = 1)

Table 5.2: ADC data storage format

The scope is a free running ring buffer. The write pointer is incremented with each incoming ADC sample vector by the
vector size of 128 bytes.

The scope memory can hold up to 224 samples. At the maximum sampling frequency of 5 MHz this corresponds to a
maximum capture duration of 3.36 seconds.

12

5.3 Register map

5.3.1 Status registers

The following status registers can be read by software:

index address | bits | radix description
0 | 0x00000000 16 | signed latest ADC 0 data
1 | 0x00000008 16 | signed latest ADC 1 data

39 | 0x00000138 16 | signed latest ADC 39 data

48 | 0x00000180 32 | unsigned | scope next write address
111 | 0x00000788 1 | binary SDRAM initial calibration complete
124 | 0x000003E0 32 | unsigned | build timestamp
125 | 0x000003E8 57 | unsigned | FPGA serial number
126 | 0x000003F0 64 | unsigned | module ID
127 | 0xO00003F8 64 | unsigned | magic number

Table 5.3: List of status registers

0 - 39: latest ADC {0 - 39} data
This register holds the latest ADC data sample.

48: Scope next write address

Address where the next data sample will be stored during the scope’s capturing process. The recently stored ADC data
can be found below this address, or - in case of a ringbuffer wraparound - also below the end of the memory region.

111: SDRAM initial calibration complete

The communication to the SDRAM is controlled by an IP core by Xilinx which performs a timing calibration at start up.
The value of this register will be 1 after completion of the initial calibration. If this registers reads 0, this might indicate
that the SDRAM is damaged.

124: build timestamp

Time when the bitstream was created. This information can be used to identify the gateware version (together with the Git
commit information documented in https://git.gsi.de/BEA_HDL/FPGA_Common#122-gateware-information).

Format:
bits 31 - 27 ‘ bits 26 - 23 ‘ bits 22 - 17 ‘ bits 16 - 12 ‘ bits 11 - 6 ‘ bits 5-0
day ‘ month ‘ year (last two decimal digits) ‘ hours ‘ minutes ‘ seconds

125: FPGA serial number

The XDMA PCle driver by Xilinx numbers the devices randomly and is not able to identify the slot number of an AMC
board. This register holds the FPGA’s unique serial number and can be used to identify an AMC board.

13

https://git.gsi.de/BEA_HDL/FPGA_Common#122-gateware-information

126: module ID

The module ID can be used to identify the type of the current bitstream.
The module ID of the UniMon gateware is 0x0001010300010002.

The fields are defined as follows:

bits 63 - 56 | bits 55 - 48 | bits47-40 | bits39-32 | bits31-16 | bits 15-0

minor gateware version ‘ major gateware version ‘ minor board version ‘ major board version ‘ developer ID ‘ project ID

Here is an incomplete list of project IDs:

project ID | project name
0x0001 | Cryring BPM
0x0002 | UniMon
0x0003 | Rate Divider
0x0004 | BLoFELD
0x0005 | Resonant Transformer
0x8001 | Red Pitaya

127: magic number

The magic number can be used to determine if the gateware uses the expected register format.
The value of this register is the same for all module IDs: 0xBADEAFFEDEADCODE.

14

5.3.2 Configuration registers

The following registers can be written by software:

index address | bits | radix description default value
0 | 0x00000400 18 | unsigned | ADC conversion pulse length 0x00000

1 | 0x00000408 5 | unsigned | MLVDS calibration delay 0x00
16 | 0x00000480 40 | none FMCO0 ADC gain 0x0000000000
17 | 0x00000488 40 | none FMCO0 ADC input mux select p 0x0000000000
18 | 0x00000490 40 | none FMCO ADC input mux select n 0x0000000000
24 | 0x000004C0 40 | none FMC1 ADC gain 0x0000000000
25 | 0x000004C8 40 | none FMC1 ADC input mux select p 0x0000000000
26 | 0x000004D0 40 | none FMC1 ADC input mux select n 0x0000000000
32 | 0x00000500 16 | signed ADC 0 offset correction summand 0x0000
71 | 0x00000638 16 | signed ADC 39 offset correction summand 0x0000
72 | 0x00000640 16 | unsigned | ADC 0 gain correction factor 0x8000
111 | 0x00000778 16 | unsigned | ADC 39 gain correction factor 0x8000
127 | 0x000007F8 1 | binary reset 0

Table 5.4: List of configuration registers
0: ADC conversion pulse length
This parameter p defines the sampling frequency of all 40 ADCs in parallel.
The sampling frequency is given by:
— 1
The allowed range for the sampling frequency is: [1kHz, 5MHz]

The default setting of 0 corresponds to a sampling frequency of 5 MHz.

The allowed range for p is: [0, 209958]

1: MLVDS calibration delay

The signals from the timing receiver enter the FPGA via the MLVDS lines with virtually no delay, while the corresponding
ADC samples will be delayed due to the sampling process.

This register can be used to add an additional delay to the signals from the timing receiver in order to calibrate them
to the delays of the ADCs.

The delay can be chosen from the range [10ns, 320ns]. Each LSB corresponds to an additional delay of 10 ns.

15

16, 24: FMC {0, 1} ADC gain

There are programmable amplifiers in front of each ADC input, which provide four discrete gains.

The following gains are available:

value ‘ gain ‘ input range ‘ resolution per LSB

0 1| +/-1024V 312.5 uv
1 2| +-512V 156.25 pv
2 51 +/-2.048V 62.5 v
3 10 | +/-1.024 V 31.25 uv

This register holds the concatenation of the gain settings of the FMC’s 20 ADCs:

bits | gain of ADC

1.0 0
3.2 1
39..38 19

17, 18, 25, 26: FMC {0, 1} ADC input mux select p / n

The ADCs have differential inputs. The two lanes p and n can be configured separately and individually for each ADC.

The following input settings are available:

value | input
0 | differential p / n input pin
1 | ground
2 | not implemented
3 | calibration voltage of +4.128 V

This register holds the concatenation of the input settings of the FMC’s 20 ADCs:

bits | settings of input p / n of ADC

1.0(0
3.2 |1
39..38 | 19

32 - 71: ADC {0 - 39} offset correction summand

Correction summand for a possible offset deviation of the ADC. The offset correction precedes the gain correction.

72 - 111: ADC {0 - 39} gain correction factor

Correction factor for a possible gain deviation of the ADC. The default value 0x8000 corresponds to a multiplication by
1. The possible correction range is [0, 2[.

127: Reset

Writing a 1 to this register triggers a reset on the gateware, which also resets all configuration registers to their default
values.
The reset will be automatically lifted so that the register does not have to be written to 0 after initiating a reset.

16

References

[1] Analog Devices LTC2323-16 datasheet, https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/
doc/datasheets/AD_LTC2323_ADC_datasheet.pdf

[2] IOxOS ADC_3117 datasheet, https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/
datasheets/ADC_3117_UG.pdf

17

https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/AD_LTC2323_ADC_datasheet.pdf
https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/AD_LTC2323_ADC_datasheet.pdf
https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/ADC_3117_UG.pdf
https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/ADC_3117_UG.pdf

	 Documentation formats
	 Resources
	1 Introduction
	2 Common FPGA based projects documentation
	2.1 Common monitoring and control features
	2.2 FPGA Observer
	2.3 Build flow and simulation
	2.4 Helper scripts
	2.5 Continuous integration environment
	2.6 Programming and hardware configuration

	3 Peripheral devices
	3.1 Analog Devices LTC2323-16 ADC
	3.2 EXAR XRA1405 GPIO expander
	3.2.1 ADC input selection
	3.2.2 Gain selection

	4 Gateware implementation
	4.1 Clocking
	4.1.1 PCIe reference clock

	4.2 Resets
	4.2.1 PLL not in lock
	4.2.2 PCIe reset
	4.2.3 Reset button

	4.3 Data flow diagram
	4.4 PCIe Interface
	4.5 SDRAM interface
	4.6 Observer

	5 Gateware software interface
	5.1 PCIe Driver
	5.1.1 Reading from a register
	5.1.2 Writing to a register
	5.1.3 Reading of scope data

	5.2 Scope memory
	5.3 Register map
	5.3.1 Status registers
	5.3.2 Configuration registers

	 References

