Rate Divider Gateware Documentation

Version 2.0

February 9, 2023

René Geißler r.geissler@gsi.de

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Contents

	Resources			3
1	Introduction			4
2				5
	2.1 Common monitoring and control features		 •	5
	2.2 FPGA Observer			5
	2.3 Build flow and simulation			5
	2.4 Helper scripts			5
	2.5 Continuous integration environment		 •	5
	2.6 Programming and hardware configuration	•	 •	5
3	Theory of operation			6
	3.1 Variable length gate mode			6
	3.2 Fixed length gate mode			
4	Connections			8
	4.1 FMC DIO LEMO Connectors		 	8
	4.2 Backplane			
5	Gateware software interface			9
J	5.1 Necessary MCH settings			-
	5.2 PCIe Driver			-
	5.2.1 Reading from a register			
	5.2.2 Writing to a register			
	5.3 Register map			
	5.3.1 Status registers			
	5.3.2 Configuration registers			
6	List of Devices			14

Resources

The code of this project and also the source of this documentation are under version control in a Git repository whose upstream is:

https://git.gsi.de/BEA_HDL/Rate_Divider_Gateware.
The relevant branch is *master*.

Common code is included as a Git submodule of the main Git repository. The upstream of the submodule is: https://git.gsi.de/BEA_HDL/FPGA_Common.
The relevant branch is *master*.

Installation scripts to set up a Gitlab runner for continuous integration including all necessary software to build the gateware can be found in a Git repository whose upstream is: https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7. The relevant branch is *master*.

1 Introduction

This document describes the gateware (= FPGA firmware) implementation of the Rate Divider.

The Rate Divider is intended to be be used as an add-on for a Struck SFMC-AD-2500-14-2 2.5 GSPS ADC card.

The Rate Divider generates the trigger pulses for the Struck card by gating the incoming RF pulses. This allows the Struck card to strobe only the data of interest.

Vaibhav Jain's original documentation can be found here: https://git.gsi.de/va.jain/rate_divider_sis18/-/wikis/Rate-Divider-for-SIS18

Harald Bräuning's original specification can be found here: https://git.gsi.de/BEA_HDL/Rate_Divider_Gateware/-/blob/master/doc/LogicModuleSpec.pdf

2 Common FPGA based projects documentation

This project incorporates the code from the *FPGA_Common* Git repository which is used in multiple projects. The documentation of the common features can be found here:

2.1 Common monitoring and control features

Documentation about the register bank, the architecture information storage and the observer can be found here: https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

2.2 FPGA Observer

There is a expert GUI that can be used together with multiple projects: https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer

2.3 Build flow and simulation

You can find instructions on how to build and simulate the gateware here: https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation

2.4 Helper scripts

You can find usefull scripts here: https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts

2.5 Continuous integration environment

Information about the continuous integration setup can be found here: https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment

2.6 Programming and hardware configuration

You can find instructions on how to program the FPGA and configure other hardware here: https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration

3 Theory of operation

The gateware generates an internal gate signal, which controls the generation of trigger pulses out of incoming RF pulses. The rate of the pulses can be reduced by any number in the range between 1 and 2^{32} .

Only complete RF pulses will be passed to the output:

- if the RF signal is high when the gate starts, the first incomplete pulse will be ignored
- if the RF signal is high when the gate stops, the gate will be extended until the RF pulse is completed

Due to the FPGA processing, the pulses of the trigger output will be delayed relative to the RF input pulses by one clock cycle of 8 ns. Additionally, there is a maximum strobing delay of one clock cycle, so that the total digital processing delay ranges between 8 ns and 16 ns. The same applies to the generation of the gate signal after receiving a signal from the FTRN.

Input signal states that are shorter than 8 ns cannot be detected reliably by the gateware.

The gate signal can be generated in two different ways determined by the configuration register gate mode:

3.1 Variable length gate mode

In this mode, the duration of the gate signal is determined by the high time of the FTRN input signal.

Name	Value	0.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3,000.000 ns	3,500.000
谒 rf_in	1								
谒 ftrn_in	0								
Ъ gate	0								
谒 trigger_out	0								

Figure 3.1: Variable length gate mode, no rate division, no delay

As you can see, the incomplete pulse at the beginning is ignored and the gate signal is extended to let the last begun pulse pass completely. In the following figure, a division of two is configured.

Name	Value	0.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3, 000 .000 ns	3,500.000
谒 rf_in	1								
谒 ftrn_in	0								
Ъ gate	0								
🔓 trigger_out	0								

Figure 3.2: Variable length gate mode, division by 2, no delay

In the following figure, additional start and stop delays to the gate are configured.

Name	Value	10.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3,000.000 ns	3,500.0
Ъ rf_in	1								
Ъ ftrn_in	0								
Ъ gate	0								
🐻 trigger_out	0								

Figure 3.3: Variable length gate mode, division by 2, start delay 1042 ns, stop delay 512 ns

3.2 Fixed length gate mode

In this mode, the duration of the gate signal is determined by the configuration register gate length.

Name	Value	0.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3, 000.000 ns	3,500.000
🐻 rf_in	1								
谒 ftrn_in	0								
🐻 gate	0								
🜡 trigger_out	0								

Figure 3.4: Fixed length gate mode, gate length 2048 ns, no rate division, no delay

Name	Value	0.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3,000.000 ns 3,50	00.000
谒 rf_in	1								
谒 ftrn_in	0								
🐻 gate	0								
🔓 trigger_out	0								

Figure 3.5: Fixed length gate mode, gate length 2048 ns, division by 2, no delay

Name	Value	0.000 ns	500.000 ns	1,000.000 ns	1,500.000 ns	2,000.000 ns	2,500.000 ns	3,000.000 ns	3,500.000
谒 rf_in	1								
🔓 ftrn_in	0								
🔓 gate	0								
Ъ trigger_out	0								

Figure 3.6: Fixed length gate mode, gate length 2048 ns, division by 2, start delay 1024 ns

4 Connections

4.1 FMC DIO LEMO Connectors

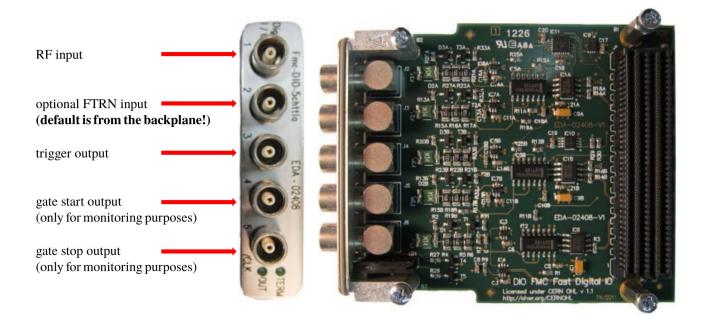


Figure 4.1: FMC DIO connections

4.2 Backplane

The following two input signals can be connected via the backplane:

MLVDS line	signal	description
0	FTRN input	signal coming from the Timing Receiver, from which the gate signal is derived
1	optional RF input	only for testing purposes, enabled by the register RF input select

As a default, the FTRN signal is configured to be driven by MLVDS line 0. The FTRN signal can optionally be driven by LEMO connector 2 by changing the register *FTRN input select*.

5 Gateware software interface

5.1 Necessary MCH settings

There are two different AFC versions used for the Rate Dividers. Version 2.0 connects to the PCIe lanes 8..11, whereas version 3.1 connects to the lanes 4..7.

To support both of them, the following settings should be applied to the MCH:

						NAT-M	CH by	N.A.T.								
Setup			PC	Ie Virt	ual Switch	config	uration									
Base Configuration JSM Switch BASE IGBE V Age Time Port on/off Port VLAN 802 IQ VLAN	Select H	lost AMCs (Non	-Transparent l	lpstream) for e	that shall be enable ach virtual switch th I switch as downstre	at shall be enak	oled afterwards									
802.1X					AMC1	A	MC2	A	MC3	AN	IC4	AM	MC5	AN	1C6	F
802.1p Port Mirroring				4	811	47	811	47	811	47	811	47	811	47	811	
Jumbo Frame		Link W		x4	x4	x4	x4	x4	x4	x4	x4	x4	x4	x4	x4)
Link Aggregation Rapid Spanning Tree Serdes/SGMII	Virtual Switch		C NT-Upstr AMC	eam												
Link Status	none				۲	0	0	0	۲	0	۲	0	۲	0	۲	
BCM5396 counters Switch PCIe x80	0	AMC1/47 🗸	- none -	v ()	0	۲	۲	۲	0	۲	0	۲	0	۲	0	
PCIe Virtual Switches	1	- none - 🗸 🗸		0	0	0	0	0					0			
Error Counters Link Status	2	- none - 🗸 🗸		0	0	0	0	0								
LINK Status	3	- none - 🗸		0	0	0		0					0			
Maintenance		Max. Link	Speed	8.0 GT	/s v 8.0 GT/s v	8.0 GT/s 🗸	8.0 GT/s v	8.0 GT/s v	8.0 GT/s 🗸	8.0 GT/s v	8.0 GT/s v	8.0 GT/s 🗸	8.0 GT/s v	8.0 GT/s 🗸	8.0 GT/s v	8.0
Script Management Board Information System Information Reboot NAT-MCH Update MCH Change Password N.A.T. Webpage Home	Save C	ou need to clic urrent configur current config switch configur	ation to PCle	EEPROM PCIe EEPRON	e your changes to l	EEPROM.										

Figure 5.1: MCH settings

Keep in mind that changing the PCIe settings will also affect the ethernet port numbering of the FEC.

If you have defined a custom boot image in which the ethernet port was set to e.g. ip=enp15s0:dhcp, you might have to change it to ip=enp16s0:dhcp.

5.2 PCIe Driver

The communication between the gateware and the software takes place via a PCIe driver by Xilinx called XDMA.

Read and write accesses are mapped to virtual file accesses:

- /dev/xdma0_c2h_0 for read accesses
- /dev/xdma0_h2c_0 for write accesses

5.2.1 Reading from a register

Example in C:

```
uint32_t address = 0x00000000;
int fd = open("/dev/xdma0_c2h_0", O_RDWR);
lseek(fd, address, SEEK_SET);
uint64_t value;
read(fd, &value, sizeof(uint64_t));
```

5.2.2 Writing to a register

It is important to write the whole register width of 64 bits. If a register has less than 64 bits, the unused MSBs have to be written to any value. 32 bit write accesses will not have any effect.

Example in C:

```
uint64_t value = 42;
uint32_t address = 0x00000400;
int fd = open("/dev/xdma0_h2c_0", O_RDWR);
lseek(fd, address, SEEK_SET);
write(fd, &value, sizeof(uint64_t));
```

5.3 Register map

5.3.1 Status registers

The following status registers can be read by software:

index	address	bits	radix	description
0	0x00000000	1	binary	gate status
124	0x00003E0	32	hex	build timestamp
125	0x00003E8	57	unsigned	FPGA serial number
126	0x000003F0	64	hex	module ID
127	0x00003F8	64	unsigned	magic number

Table 5.1: List of status registers

0: gate status

This register holds the status of the gate signal, which is also output on the DIO 3 LEMO connector.

124: build timestamp

Time when the bitstream was created.

Format:

bits 31 - 27	bits 26 - 23	bits 22 - 17	bits 16 - 12	bits 11 - 6	bits 5 - 0
day	month	year (last two decimal digits)	hours	minutes	seconds

125: FPGA serial number

The XDMA PCIe driver by Xilinx numbers the devices randomly and is not able to identify the slot number of an AMC board. This register holds the FPGA's unique serial number and can be used to identify an AMC board.

126: module ID

The module ID can be used to identify the type of the current bitstream. The value of the module ID of the rate divider gateware is either 0x0002000200010003 or 0x0002010300010003, depending on the AFC board version.

The fields are defined as follows:

bits 63 - 56	bits 55 - 48	bits 47 - 40	bits 39 - 32	bits 31 - 16	bits 15 - 0
minor gateware version	major gateware version	minor board version	major board version	developer ID	project ID

Since the AFC board versions 2.0 and 3.1 are used in this project, the board version can be either 0x0002 or 0x0103.

Here is an incomplete list of project IDs:

project ID	project name
0x0001	Cryring BPM
0x0002	UniMon
0x0003	Rate Divider
0x0004	BLoFELD
0x0005	Resonant Transformer
0x8001	Red Pitaya

127: magic number

The magic number can be used to determine if the gateware uses the expected register format. The value of this register is the same for all module IDs: 0xBADEAFFEDEADCODE.

5.3.2 Configuration registers

The following registers can be written by software:

index	address	bits	radix	description	default value
0	0x00000400	32	unsigned	divisor minus 1	0x00000000
1	0x00000408	1	binary	gate mode	0x0
2	0x00000410	32	unsigned	gate length	0x00000000
3	0x00000418	32	unsigned	gate start delay	0x00000000
4	0x00000420	32	unsigned	gate stop delay	0x00000000
16	0x00000480	1	binary	RF input select	0x0
17	0x00000488	1	binary	FTRN input select	0x1
18	0x00000490	8	hex	MLVDS direction	0x00
19	0x00000498	1	binary	test signal enable	0x00
20	0x000004A0	32	unsigned	test RF toggle period	0x0000063
21	0x000004A8	32	unsigned	test FTRN toggle period	0x000003e7
127	0x000007F8	1	binary	reset	0x0

Table 5.2: List of configuration registers

0: divisor minus 1

This parameter defines the division ratio of the incoming RF pulses. At a value of 0, all incoming pulses inside the gate will be passed to the output. At a value of e.g. 9, the {1st, 11th, 21th, ...} of the incoming pulses inside the gate will be passed to the output.

1: gate mode

If the gate mode is 0, the gate length will be defined by the length of the incoming pulse from the FTRN. In this case the value of register 2 *gate length* will be ignored.

If the gate mode is 1, the gate length will be defined by register 2 gate length.

2: gate length

The value of this register is only relevant if register 1 *gate mode* is set to a value of 1. The gate length is adjustable with the granularity of the FPGA clock frequency of 125 MHz. 1 LSB corresponds to 8 ns.

3: gate start delay

Additional delay between the rising edge of the FTRN input signal and the rising edge of the gate signal. 1 LSB corresponds to a delay of 8 ns.

4: gate stop delay

Additional delay to the falling edge of the gate signal. 1 LSB corresponds to a delay of 8 ns. The value of this register will be ignored if register 1 *gate mode* is set to a value of 1.

16: RF input select

This register is intended for testing purposes only and can be left at its default value for normal operation.

value | RF input source

- 0 FMC DIO LEMO connector 1
- 1 MicroTCA backplane, MLVDS line 1

17: FTRN input select

The default connection of the FTRN signal is via the backplane.

value	RF input source
0	FMC DIO LEMO connector 2

1 MicroTCA backplane, MLVDS line 0

18: MLVDS direction

This register is intended for testing purposes only. The direction of each of the eight MLVDS pins is individually adjustable:

value	direction		
0	input		
1	output		

19: test signal enable

This register is intended for testing purposes only. It enables the generation of test signals which allow standalone tests of the rate divider. If enabled, a test RF signal will be output on DIO 4 and a test FTRN signal will be output on DIO 5. Additionally, the two signals can be output on the MLVDS lines 1 and 0, if the corresponding pins are configured as outputs via register 18 MLVDS direction.

20: test RF toggle period

This register is intended for testing purposes only. It contains the period after which the test RF signal will toggle. 1 LSB corresponds to 8 ns. The test signal is a continuous rectangle signal.

21: test FTRN toggle period

This register is intended for testing purposes only. It contains the period after which the test FTRN signal will toggle. 1 LSB corresponds to 8 ns. The test signal is a continuous rectangle signal.

127: reset

Resets the FPGA, which includes resetting the configuration registers to their default values. This register will also automatically be resetted to zero.

6 List of Devices

location	FEC	MCH	AMC slot nr	AFC version	AFC serial nr	FPGA serial nr	commen
ELR	sddsc079	sdmch019	2	2.0	-	0x00408c8522c3004	no SDRA
ELR	sddsc080	sdmch018	2	2.0	-	0x06408c8522c300c	-
TBD	TBD	TBD	TBD	3.1	35233	0x054b48160e47054	no SDRA

Table 6.1: List of Rate Divider devices in use

The Rate Divider gateware does not use the SDRAM on the AFC board. The FPGA serial number is not printed anywhere but can only be read from the status register *FPGA serial number*.