
Cryring BPM
Gateware Documentation

Version 2.1

February 9, 2023

René Geißler
r.geissler@gsi.de

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Contents
Documentation formats 4

Resources 5

1 Introduction 6
1.1 Measurement principle . 6
1.2 Processing hardware . 9

2 BPM algorithm 11
2.1 Capacitance correction . 11
2.2 Least squares algorithm . 11

2.2.1 Variance . 12
2.2.2 Intensity . 12

2.3 Averaging . 12
2.3.1 Variance . 12
2.3.2 Intensity . 12

2.4 Control signals . 12
2.4.1 Gate . 12
2.4.2 RF pulse . 12

2.5 Parameters . 13
2.5.1 Least squares algorithm calculation length . 13
2.5.2 Averaging length . 13

3 Common FPGA based projects documentation 14
3.1 Common monitoring and control features . 14
3.2 FPGA Observer . 14
3.3 Build flow and simulation . 14
3.4 Helper scripts . 14
3.5 Continuous integration environment . 14
3.6 Programming and hardware configuration . 14

4 Peripheral devices 15
4.1 Si571 programmable VCXO . 15

4.1.1 Programming the frequency . 16
4.1.2 Configuration . 16

4.2 AD9510 PLL and clock distribution . 18
4.2.1 Configuration . 18

4.3 ISLA216P ADC . 19
4.3.1 Configuration . 19

5 Gateware implementation 20
5.1 Clocking . 20

5.1.1 PCIe reference clock . 20
5.1.2 FMC ADC clocks . 20

5.2 Resets . 20
5.2.1 PLL not in lock . 20
5.2.2 PCIe reset . 20
5.2.3 Reset button . 21

5.3 Data flow diagram . 22
5.4 Input delays . 23

5.4.1 Calculation of optimal delay values . 23
5.4.2 Chosen delay values . 23

2

5.5 Clock domain crossings . 24
5.6 Gate signal . 24
5.7 RF signal . 24
5.8 BPM algorithm . 24

5.8.1 Pipeline steps performed every clock cycle . 24
5.8.2 Pipeline steps performed with a reduced data rate . 25

5.9 BPM averaging . 27
5.10 AXI infrastructure . 27
5.11 AXI Stream infrastructure . 28

5.11.1 Scopes . 28
5.12 Configuration of peripheral devices . 28

5.12.1 SPI Interface . 28
5.12.2 I2C Interface . 28

5.13 PCIe Interface . 29
5.14 SDRAM interface . 29
5.15 Observer . 29

6 Gateware software interface 30
6.1 PCIe Driver . 30

6.1.1 Reading from a register . 30
6.1.2 Writing to a register . 30
6.1.3 Reading of scope data . 31

6.2 Scope memory . 31
6.2.1 Scope 0: corrected ADC data . 31
6.2.2 Scope 1: BPM result . 32
6.2.3 Scope 2: BPM averaging result . 33

6.3 Register map . 34
6.3.1 Status registers . 34
6.3.2 Configuration registers . 37

6.4 Capturing procedure . 40
6.4.1 Known number of samples . 40
6.4.2 Unknown number of samples . 40

7 Extended gateware software interface 41
7.1 Extended register map . 41

7.1.1 Additional status registers . 41
7.1.2 Additional configuration registers . 43

8 Hardware properties 47
8.1 LEDs driven by the FPGA gateware . 47
8.2 Differences between FMC ADC 250 M 16B 4CH versions . 47
8.3 Analog characteristics . 47

8.3.1 ADC input filter . 47
8.4 Required changes for PLL lock . 50
8.5 List of ADC-FMC boards . 51
8.6 Productive setup . 51

9 Test coverage 53
9.1 BPM algorithm . 53

9.1.1 Simulation . 53
9.1.2 Using a function generator as data source . 53

9.2 Reliability tests . 54

References 56

3

Documentation formats
There are three available documentation formats:

• Markdown: https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware/-/blob/master/README.md

• DokuWiki: https://www-bd.gsi.de/dokuwiki/doku.php?id=ds:projects:cryring:bpm:gateware:documentation

• LaTeX (PDF): https://www-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:cryring:bpm:
gateware:documentation:cryring_bpm_gateware_documentation.pdf

All documentation is based on the content of README.md, which is the most up to date format. The DokuWiki and the
PDF version have been generated automatically, but will not be updated automatically.

Up to date DokuWiki and PDF versions can be downloaded from the CI/CD section: https://git.gsi.de/BEA_HDL/
Cryring_BPM_Gateware/-/pipelines.

4

https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware/-/blob/master/README.md
https://www-bd.gsi.de/dokuwiki/doku.php?id=ds:projects:cryring:bpm:gateware:documentation
https://www-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:cryring:bpm:gateware:documentation:cryring_bpm_gateware_documentation.pdf
https://www-bd.gsi.de/dokuwiki/lib/exe/fetch.php?media=ds:projects:cryring:bpm:gateware:documentation:cryring_bpm_gateware_documentation.pdf
https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware/-/pipelines
https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware/-/pipelines

Resources
The code of this project and also the source of this documentation are under version control in a Git repository whose
upstream is:
https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware
The relevant branch is master.

Additional datasheets and papers are included as a Git submodule of the main Git repository. The upstream of the sub-
module is:
https://git.gsi.de/BEA_HDL/datasheets
The relevant branch is master.

Common code is included as a Git submodule of the main Git repository. The upstream of the submodule is:
https://git.gsi.de/BEA_HDL/FPGA_Common
The relevant branch is master.

Installation scripts to set up a Gitlab runner for continuous integration including all necessary software to build the gate-
ware can be found in a Git repository whose upstream is:
https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7
The relevant branch is master.

5

https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware
https://git.gsi.de/BEA_HDL/datasheets
https://git.gsi.de/BEA_HDL/FPGA_Common
https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7

1 Introduction
This document describes the gateware (= FPGA firmware) implementation of the Beam Position Monitor (BPM) for the
Cryring accelerator at GSI. The term Trajectory Measurement System (TMS) is also common for this system and is used
as a synonym for BPM. The BPM measures the horizontal and vertical beam positions at nine places of the accelerator
ring, resulting in 18 location results.

There had been a previous implementation by Piotr Miedzik, but since no documentation could be found besides a confer-
ence paper [2], it was decided to reimplement the gateware.

1.1 Measurement principle
At each of the 18 measurement spots two capacitor plates are used to detect the electrostatic induction of the passing by
charged particle bunches.

Figure 1.1: Mechanical drawing of a single BPM. The two segments of the slotted tube are the capacitor plates.
The box on the top is the amplifier. Image origin: [3]

The 36 voltages of the capacitor plates are amplified and led via coaxial cables to a single evaluation point where the analog
to digital conversion and the digital processing takes place.

6

Figure 1.2: Cryring BPM system overview. This document only describes the implementation of the block
labeled 125 MSa/s ADC DAQ System (36 ch.), excluding the software part. Image origin: [3]

The positions of the particle beam are calculated respectively from the voltage difference of two related capacitor plates
using the algorithm described in chapter 2.

7

Figure 1.3: Schematic of the digital input filters. Image origin: Andreas Reiter

The moving average filter is intended to reduce the noise when higher frequencies are not of interest.

The Chebyshev filter is intended to suppress a 70 kHz noise on certain BPMs, which couples in from the supply volt-
age of the ion getter pumps.

Figure 1.4: Frequency response of the Chebyshev filter

8

1.2 Processing hardware
Each of the 36 voltages coming from the amplifiers at the capacitor plates is sampled by a Renesas ISLA216P ADC at a
sampling rate of 125 MHz with a resolution of 16 bits. Respectively four of the ADCs are placed on a single FMC board.
Respectively two (ore only one for the last one) of the FMC boards are mounted on an AFC carrier board which is equipped
with a Xilinx Artix XC7A200T FPGA for data processing [4].

Figure 1.5: An AFC carrier board with two mounted ADC FMC boards. The FPGA is located under the blue
heat spreader.

The FPGA is a mid-range device providing the following resources [5]:

• Logic cells: 215,360

• Block RAMs: 365 x 36 Kibits

• Multipliers/Adders: 740

The whole system uses five AFC carrier boards which are mounted in a MicroTCA crate together with a timing receiver
and a FEC for post processing. Each of the five FPGAs is responsible for the processing of up to eight ADC data streams.
The communication between the FEC and the FPGAs takes place via PCI Express over the so called backplane of the
MicroTCA crate.

9

Figure 1.6: MicroTCA crate with from left to right: power supply, MCH, FEC, timing receiver, 5 AFC boards
with 9 mounted FMC ADC boards, second MCH

This document describes the gatewares of the FPGAs on the five AFC carrier boards. The gatewares are identical inde-
pendent of the number of mounted FMC boards.

10

2 BPM algorithm
The beam position is calculated from the measurement of the voltages of two corresponding plates:

δ = a+ x

κ
σ (2.1)

with

δ = UR − UL (2.2)

and

σ = UR + UL (2.3)

where κ is a proportionality factor influenced by the dimension of the measurement system, a some possible voltage offset
and x the beam position.

2.1 Capacitance correction
The capacitance of the two corresponding capacitor plates can differ from their nominal value so that one of the voltages
has to be corrected by multiplying a correction factor:

UR = UR,orig (2.4)

UL = cL · UL,orig (2.5)

The default value of cL in the gateware is 1. It is configurable by the software via register accesses.

2.2 Least squares algorithm
A linear least squares approach is used to reduce measurement errors. The choice of the algorithm is described in [1].
The optimal approach would be an orthogonal least squares algorithm. Since the relative error of the difference signal δ
dominates that of the sum signal σ, it can be simplified to a vertical least squares algorithm:

E(x, a) =
∑

i

(a+ x

κ
σi − δi)2 (2.6)

Minimizing

E(x, a) (2.7)

via partial differentiation

∂E

∂x
= 0 (2.8)

and

∂E

∂a
= 0 (2.9)

leads to

x

κ
=
N

∑
i σiδi − (

∑
i σi)(

∑
i δi)

N
∑

i σ
2
i − (

∑
i σi)2 (2.10)

11

2.2.1 Variance
The variance of the least squares algorithm result is calculated as follows:

V ar =
N

∑
i δ

2
i − (

∑
i δi)2

N(N
∑

i σ
2
i − (

∑
i σi)2) (2.11)

2.2.2 Intensity
The beam intensity is calculated as follows:

I =
N

∑
i σ

2
i − (

∑
i σi)2

N2 (2.12)

2.3 Averaging
For further reducing the data rate and reducing the measurement noise, the result of the least squares algorithm is averaged
over an adjustable number of samples N . This is implemented via a simple block averaging:

xavg = 1
N

N−1∑
t=0

x(t) (2.13)

2.3.1 Variance
The variance of the averaging result is calculated by averaging the variances and dividing by the averaging length:

V aravg = 1
N2

N−1∑
t=0

V ar(t) (2.14)

2.3.2 Intensity
The average intensity is calculated as follows:

Iavg = 1
N

N−1∑
t=0

I(t) (2.15)

2.4 Control signals
2.4.1 Gate
There is an input signal coming from a timing receiver that gates the calculation of the least squares algorithm. By default,
the gateware is configured to use the first MLVDS line as an input for the gate signal. A calculation will start with the low
to high transition of the gate signal and will be repeated continuously until a high to low transition is detected, after which
the current calculation will still be completed.

2.4.2 RF pulse
The RF pulse signal is intended to synchronize the calculation of the least squares algorithm with the frequency of the
particle bunches. A possible previous calculation of the least squares algorithm will be finished and a new calculation will
be started whenever a RF pulse is detected.

12

2.5 Parameters
2.5.1 Least squares algorithm calculation length
This parameter defines the number of ADC samples that will be taken into account by the least squares algorithm if no RF
pulses are present. The detection of a RF pulse will override this parameter. The overriding will only work as expected if
the calculation length is set to a value that is longer than the period of the RF pulses.

The available range of values for the calculation length is 3 to 65536.

2.5.2 Averaging length
This parameter defines the number of least squares algorithm results that will be taken into account by the averaging algo-
rithm.

The available range of values for the averaging length is 1 to 1048576.

13

3 Common FPGA based projects documentation
This project incorporates the code from the FPGA_Common Git repository which is used in multiple projects. The docu-
mentation of the common features can be found here:

3.1 Common monitoring and control features
Documentation about the register bank, the architecture information storage and the observer can be found here:
https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

3.2 FPGA Observer
There is a expert GUI that can be used together with multiple projects:
https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer

3.3 Build flow and simulation
You can find instructions on how to build and simulate the gateware here:
https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation

3.4 Helper scripts
You can find usefull scripts here:
https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts

3.5 Continuous integration environment
Information about the continuous integration setup can be found here:
https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment

3.6 Programming and hardware configuration
You can find instructions on how to program the FPGA and configure other hardware here:

https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration

14

https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features
https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer
https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation
https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts
https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment
https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration

4 Peripheral devices
There are three different peripheral devices on each of the FMC ADC boards that have to be configured by the gateware.
Since they have no persistent storage they have to configured after every power cycle:

• Si571 programmable VCXO

• AD9510 PLL and clock distribution

• ISLA216P ADC

4.1 Si571 programmable VCXO
The Si571 programmable VCXO is connected via I2C using 0x49 as device address. Additionally, there is an OE (output
enable) pin, which has to be driven high or left unconnected since it provides an internal pullup. The device supports a
maximum I2C bus speed of 400 kbit/s.

The startup frequency before configuration via I2C is 155.52 MHz. The Si571 is located below the heat spreader of
the FMC board, which has to be unscrewed to read the labeling:

*SiLabs 571
AJC000337 G
D09JW702+*

The part properties can be decoded by providing the part number 571AJC000337 on a SiLabs web page [6]:

Product: Si571
Description: Differential/single-ended I2C programmable VCXO; 10-1417 MHz
Frequency A: 155.52 MHz
I2C Address (Hex Format): 49
Format: LVPECL
Supply Voltage: 3.3 V
OE Polarity: OE active high
Temperature Stability: 20 ppm
Tuning Slope: 135 ppm/V
Minimum APR: +/- 130 ppm
Frequency Range. 10 - 280 MHz
Operating Temp Range (C): -40 to +85

A datasheet can be found on the SiLabs website [7].

15

4.1.1 Programming the frequency
There are three adjustable parameters that define the output frequency:

fout = fXT AL ·RFREQ
HSDIV ·N1 (4.1)

where

• fXT AL is the fixed internal quartz frequency of 114.285 MHz +/- 2000 ppm.

• fXT AL ·RFREQ has to be in the range [4850MHz, 5670MHz].

• allowed values for HSDIV are 4, 5, 6, 7, 9, 11

• allowed values for N1 are 1 and all even numbers in [2, 128]

The three parameters should be chosen in a way that RFREQ is minimal to reduce power consumption. If there should
still be multiple possibilities for the choice of HSDIV ·N1, one should choose HSDIV as maximal.

For a desired output frequency of 125 MHz the optimum values are:

• HSDIV = 5

• N1 = 8

• RFREQ = 43.750273439

Since the uncorrected fXT AL frequency has an inaccuracy of 2000 ppm, one should read the initial RFREQ value first
and calculate

RFREQ = RFREQinit · fout ·HSDIV ·N1
fout,init ·HSDIVinit ·N1init

(4.2)

in order to get a more accurate result. RFREQinit is factory calibrated to compensate the actual frequency offset of
fXT AL.

The VCXO has a built-in configuration timeout of 10 ms. All I2C write operations from freezing to unfreezing the digitally
controlled oscillator have to complete during this period to become active.

4.1.2 Configuration
The following registers are read by the gateware for calculating the frequency correction:

address description
0x07 HSDIV - 4 (bits 7 - 5), N1 - 1 MSB (bits 4 - 0)
0x08 RFREQ MSB (bits 5 - 0)
0x09 RFREQ
0x0A RFREQ
0x0B RFREQ
0x0C RFREQ LSB

Table 4.1: Si571 registers read by the gateware

The value of register 0x07 is only used to determine if the frequency has been programmed before, e.g. after a reloading
of the bitstream of the FPGA without a power cycle of the FMC ADC board. The initial value of HSDIV is 4 and it is
programmed to 5. Applying the frequency correction again would lead to a wrong result, since the RFREQ registers do
not contain the factory defaults any more.

The following registers are programmed by the gateware after the calculation of the frequency correction:

16

address value description
0x89 0x10 freeze digitally controlled oscillator (bit 4)
0x07 0x21 HSDIV - 4 (bits 7 - 5), N1 - 1 MSB (bits 4 - 0)
0x08 0xC2 N1 - 1 LSB (bits 7 - 6), RFREQ MSB (bit 5 - 0)
0x09 result of the frequency correction RFREQ
0x0A result of the frequency correction RFREQ
0x0B result of the frequency correction RFREQ
0x0C result of the frequency correction RFREQ LSB
0x89 0x00 unfreeze digitally controlled oscillator (bit 4)
0x87 0x40 new frequency applied (bit 6)

Table 4.2: Si571 registers programmed by the gateware

Example configuration of some devices

FMC version FMC SN initial RFREQ programmed RFREQ meas. freq. (Hz)
v2.3 155107 0x02B8EF1D6D 0x02BC3497C2 125024480
v2.3 301236 0x02B8F28CD4 0x02BC380B4A 125024401
v1.2 - 0x02B8BC2738 0x02BC016450 124974845
v1.0 - 0x02B94432E0 0x02BC8A1373 124975700

The frequency was measured relatively to the processing clock of the AFC board.

17

4.2 AD9510 PLL and clock distribution
The Analog Devices AD9510 is connected via SPI. Writing to registers must be completed with a write to the register
address 0x5A with the LSBit set in the write value (e.g. 0x01) to take effect. Multiple writes can precede the writing of
register 0x5A, so that this needs to be done only once at the end of a write sequence. The maximum SPI clock frequency
is 25 MHz.

The phase frequency detector of the PLL, which compares the VCXO frequency to the reference frequency, has a maximum
input frequency of 100 MHz. Higher frequencies have to be divided by the prescalers R (reference input) and N (VCXO
input). A lock signal can be connected to a status pin, that is connected to a FPGA GPIO.

A datasheet can be found on the Analog Devices website [8].

4.2.1 Configuration
The gateware configures the AD9510 device to lock the VCXO frequency to a reference clock coming from the FPGA.
The following registers are programmed by the gateware:

address value description
0x08 0x33 normal charge pump mode (bits 1 - 0), analog lock detect on STATUS pin (bit 5 - 2)
0x09 0x70 charge pump current: 4.8 mA (bits 6 - 4)
0x0A 0x44 PLL power up (bits 1 - 0), VCXO prescaler: 2 (bits 4 - 2), B counter bypass (bit 6)
0x0B 0x00 R divider MSB
0x0C 0x02 R divider LSB: divide reference clock input by 2
0x0D 0x02 anti backlash pulse width: 6.0 ns (bit 1 - 0)
0x3C 0x08 output 0 voltage: 810 mV (bits 3 - 2), output 0 enable (to ADC 0, bits 1 - 0)
0x3D 0x08 output 1 voltage: 810 mV (bits 3 - 2), output 1 enable (to ADC 1, bits 1 - 0)
0x3E 0x08 output 2 voltage: 810 mV (bits 3 - 2), output 2 enable (to ADC 2, bits 1 - 0)
0x3F 0x08 output 3 voltage: 810 mV (bits 3 - 2), output 3 enable (to ADC 3, bits 1 - 0)
0x40 0x03 output 4 power down (bit 0)
0x41 0x03 output 5 power down (bit 0)
0x42 0x03 output 6 power down (bit 0)
0x43 0x02 output 7 current 3.5 mA (bits 2 - 1), output 7 enable (to FPGA for monitoring, bit 0)
0x45 0x02 clk1 power down (bit 1), clock input from clk2 (VCXO) (bit 0)
0x49 0x80 bypass the divider in front of output 0 (bit 7)
0x4B 0x80 bypass the divider in front of output 1 (bit 7)
0x4D 0x80 bypass the divider in front of output 2 (bit 7)
0x4F 0x80 bypass the divider in front of output 3 (bit 7)
0x57 0x80 bypass the divider in front of output 7 (bit 7)
0x5A 0x01 load the register bank overlay to the actual register bank (bit 0)

Table 4.3: AD9510 registers programmed by the gateware

18

4.3 ISLA216P ADC
The four ISLA216P ADCs are connected via SPI. The communication to each chip is enabled via an individual chip select
line. The MOSI, MISO and CLK lines are shared between the four chips. Parallel configuration by driving all chip selects
high at the same time works for the writing registers, but not for reading, since there would be multiple drivers on theMISO
line. The maximum SPI clock frequency is given by the ADC sampling frequency divided by 16. At a sample frequency
of 125 MHz this corresponds to a SPI clock frequency of 7.8125 MHz.

A datasheet can be found on the Renesas website [9].

The ADCs provide a configurable gain correction of +/- 4.2Since the gain correction and the offset correction are im-
plemented digitally in the gateware, most of the configuration registers can be left at their default values.

The SPI interface in the gateware is implemented as a four wire interface, whereas the default setting of the ISLA216P
SPI interface is a three wire mode. For being able to configure the ISLA216Ps interactively, the gateware configures the
corresponding register to four wire mode at start up.

4.3.1 Configuration
The following registers are programmed by the gateware:

address value description
0x00 0x80 enable four wire mode (enable the usage of a dedicated SPI MISO line)

Table 4.4: ISLA216P registers programmed by the gateware

19

5 Gateware implementation

5.1 Clocking
The gateware uses three primary clocks:

• PCIe reference clock, 100 MHz

• FMC 0 ADC clock, 125 MHz

• FMC 1 ADC clock, 125 MHz

5.1.1 PCIe reference clock
The PCIe reference clock comes from an output of an ADN4604 clock switch on the AFC board [11]. The clock switch
is controlled via I2C by the MMC firmware to output a 100 MHz clock, which enters the FPGA as a differential input
signal on pins H20 and G20. The PCIe reference clock feeds the reference clock input of the PCIe IP core by Xilinx, which
contains a PLL producing a 125 MHz output clock for the AXI interface named clk_125_pcie_axi.

clk_125_pcie_axi drives a MMCM to generate:

• clk_125, 125 MHz, this is the main processing clock of the design

• clk_100, 100 MHz, used for reading the FPGA serial number

• clk_200, 200 MHz, used for the SDRAM interface IP core by Xilinx

The SDRAM interface IP core contains a MMCM which generates a 100 MHz clock named clk_100_sdram for the AXI
interface.

5.1.2 FMC ADC clocks
On each of the two FMC boards there is a Si571 programmable VCXO (see chapter 4.1) which feeds the four ADCs. The
frequency of the VCXO can be coupled to a reference clock coming from the FPGA (see chapter 4.2). The VCXO is
programmed to a nominal output frequency of 125 MHz and coupled by the PLL with clk_125 coming from the FPGA.
Bringing the PLL to lock is quite demanding, so that with the current settings a stable lock can not be guaranteed.

From each of the four ADCs of an FMC board an individual clock signal is led to the FPGA which is used for the de-
serialization in the IDDR primitives. For the further processing, only the clock signal from the first ADC of a FMC board
is used since the clock frequencies of the four ADCs are identical.

There are two clock domain crossing FIFOs in the gateware to synchronize the data from the ADCs to the main processing
clock clk_125.

5.2 Resets
5.2.1 PLL not in lock
As long as the PLL in the MMCM producing the main processing clock clk_125 is not yet in lock, the design is held in
reset. After this the lock should be stable until the next power cycle.

5.2.2 PCIe reset
The design will be reset whenever the PCIe connection is re-initialized. This happens e.g. when the FEC is rebooted.

20

5.2.3 Reset button
There is a push button labeled RST at the center of the AFC front panel which is connected to the microcontroller for the
MMC firmware. The OpenMMC firmware forwards a button press with a duration of at least two seconds to the FPGA
pin AG26 as an active low signal to initiate a reset of the gateware.

Resetting the FPGA leads to the loss of the PCIe connection. To re-enable the connection, the FEC has to be rebooted.

21

5.3 Data flow diagram

AXI
 Interconnect

PCIe
Interface

SDRAM
Interface

Register Bank
and gateware
information
 storage

Register
Bank

AXI-Block
RAM

converter

Block
RAM

Scope 0 /
Observer

Block
RAM

AXI
Data

Mover

AXIS
FIFO

Control
Logic

Scope 1
 AXI

Data
Mover

AXIS
FIFO

Control
Logic

Scope 2
 AXI

Data
Mover

AXIS
FIFO

Control
Logic

 FMC 0
 interface Peripherals

Configurator

SPI
Interface

ADC
Data
Interface

I2C
Interface

ADC
1 IF

ADC
2 IF

ADC
0 IF

ADC
3 IF

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

 FMC 1
 interface Peripherals

Configurator

SPI
Interface

I2C
Interface

BPM
Algorithm

BPM
Algorithm

BPM
Algorithm

BPM
Algorithm

BPM
Averaging
Algorithm

BPM
Averaging
Algorithm

BPM
Averaging
Algorithm

BPM
Averaging
Algorithm

ADC
Data
Interface

ADC
1 IF

ADC
2 IF

ADC
0 IF

ADC
3 IF

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

D
at

a
de

la
y

C
lk

 d
el

ay

Legend :

AXI

AXI Stream

Block RAM protocol

stream with valid signal

monitoring and control

continuous stream

clocks

Figure 5.1: Simplified data flow diagram

22

Figure 5.1 shows a simplified data flow diagram. For simplicity, some features are not included in the diagram:

• processing clocks and clock domain crossings

• resets

• gate and RF pulse inputs

• ADC data offset and gain corrections

• LEDs

• read out logics of FPGA serial number and build time stamp

• ADC maximum amplitude calculation

• signals connected to the observer

• data width conversions of AXI and AXI Stream connections

5.4 Input delays
The data inputs from the ADCs require a latency correction to compensate clock and routing delays. This is implemented
via individually configurable input delay primitives for both the clock and for the data input pins. By increasing the input
delay of either a clock or of the associated data inputs, the alignment can be corrected in both directions.

The input delays provide a 32 tap delay line with a configurable delay between 0 to 31 taps [10]. Each tap corresponds to
a delay of:

ttab delay = 1
64·fref

with fref being the frequency of the clock connected to the IDELAYCTRL primitive. With the 200 MHz clock con-
nected in this design this corresponds to a tap delay value of 78 s.

5.4.1 Calculation of optimal delay values
The ADCs offers programmable user patterns that can be sent in place of the ADC samples to check the correct timing of
the digital interface. For finding the optimum delay values, the following procedure is applied:

• The clock input delay is increased until the pattern begins to deteriorate and the delay index at which that happens
is noted.

• After that the clock input delay is reset to 0 and the data delay is increased until the pattern begins to deteriorate.

• The optimum value is assumed to be the midpoint between these values.

5.4.2 Chosen delay values
For an ADC clock frequency of 125 MHz the optimal delay values are:

• FMC0: no deterioration at any clock delay, but deterioration at and above data delay 0x06
– ADC clock delay value: 0x0D
– ADC data delay value: 0x00

• FMC1: no deterioration at any clock delay, but deterioration at and above data delay 0x05
– ADC clock delay value: 0x0D
– ADC data delay value: 0x00

These values are programmed to the IDELAY primitives at start up. They can be changed via individual configuration
registers (see chapter 7.1.2).

23

5.5 Clock domain crossings
Even though the FMC clocks are coupled to the main processing clock by the FMC’s PLLs, they can jitter against the main
processing clock or even run at a slightly different frequency if the PLLs unlock for any reason.

To prevent data corruption, two clock domain crossing FIFOs are used for the incoming ADC data, one for each FMC
board. In the case of frequency deviations, there are two cases to differentiate:

1. the FMC clock is running slightly faster than the processing clock:
• one sample at a time will be discarded
• this happens synchronous for all four ADCs of a FMC board

2. the FMC clock is running slightly slower than the processing clock:
• one sample at a time will be repeated
• this happens synchronous for all four ADCs of a FMC board

Due to the synchronous handling of the four ADCs on a FMC board, the discarding or repetition of samples should not
have any measurable effect on the BPM results, since the two inputs to each BPM come from the same FMC board.

5.6 Gate signal
The gate signal is fed to the FPGA via one of the eight MLVDS lines on the AMC connector. The selection is made via
a configuration register (see chapter 6.2.2). The register’s default is to route MLVDS line 0 to the gate input of the BPM
algorithm.

5.7 RF signal
The pulses of the RF signal define the length of the linear regression in the BPM algorithm. The selection is made via a
configuration register (see chapter 6.2.2). As a default, the RF signal is fed to the FPGA via the MMCX connector labeled
TRIG on the front panel of FMC 1. In this case this signal is valid for both FMCs and the TRIG input of FMC 2 is not
used.

5.8 BPM algorithm
The proportionality factor κ in equation 2.10 is set implicitly to 1 so that the result has to interpreted as a relative position
in the range [−1, 1]:

x =
N

∑
i σiδi − (

∑
i σi)(

∑
i δi)

N
∑

i σ
2
i − (

∑
i σi)2 (5.1)

The capacitance correction (see chapter 2.1) and the linear regression (equation 4.1) are implemented as a pipelined algo-
rithm. The processing clock is equal to the sampling frequency of the ADCs.

5.8.1 Pipeline steps performed every clock cycle
The gain correction, the differences and sums of the incoming ADC data pairs σ and δ and the four different sums of
equation 4.1 are calculated every clock cycle.

Step 0: Capacitance correction

• offset and gain corrected ADC 0 data sample is strobed unchanged. Input: 17 bits signed, output 17 bits signed

• offset and gain corrected ADC 1 data sample is multiplied with a correction factor coming from a configuration
register. Input: 17 bits signed for data, 16 bits unsigned for correction factor, output 17 bits signed

24

Step 1: Calculation of sum and difference signals

• σ: sum of data 0 and data 1, inputs: 17 bits signed, output: 18 bits signed

• δ: difference of data 0 and data 1, inputs: 17 bits signed, output: 18 bits signed

Step 2: Calculation of products, sign extension, summation

The maximum word length of the adders in the DSP48 blocks of the FPGA is 48 bits. When using these adders, the
maximum summation length is limited by the word length of longest term σδ (36) to a value of 12.

•
∑

i σiδi: inputs: 18 bits signed, output: 48 bits signed

•
∑

i σ
2
i : input: 18 bits signed, output: 48 bits signed

•
∑

i σi: input: 18 bits signed, output: 30 bits signed

•
∑

i δi: input: 18 bits signed, output: 30 bits signed

• N : counter, output: 12 bits unsigned

5.8.2 Pipeline steps performed with a reduced data rate
The following pipeline steps are only performed once for every linear regression period. The length of the linear regression
period is defined by the BPM linear regression length register (see chapter 6.2.2).

If a RF signal is present, the length is additionally controlled by the distances of the pulses of this signal. A new lin-
ear regression calculation will be started with every rising edge of the RF signal, while the post processing steps for the
previous period will be started.

Step 3: Conversion to floating point

The DSP48 blocks in the FPGA can only handle multiplications up to 18 bits times 25 bits. For this reason, a conversion
to a floating point format is performed.

The floating point format is:

• mantissa: 18 bits signed (integer, not fractional as usual for floating point formats)

• exponent: 6 bits unsigned

which decodes to: value = mantissa · 2exponent

The sums
∑

i σiδi,
∑

i σ
2
i ,

∑
i σi and

∑
i δi are converted to float.

A conversion is not necessary for N since it is only 12 bits wide.

Step 4: Calculation of the products of sums

The products N
∑

i σiδi, (
∑

i σi)(
∑

i δi), N
∑

i σ
2
i and (

∑
i σi)2 are calculated by multiplying the mantissas and by

adding the exponents of the floating point representations.

Step 5: Shifting to align for subtraction and sign extensions

In general the results of step 4 will have different exponents, so that the mantissas have to be shifted to a common exponent
before a subtraction can take place.

The mantissa of the float number with the smaller exponent is shifted by the difference of exponents digits to the right
and the exponent is set to the larger exponent. Sign extensions by 1 bit take place to prevent over- and underflows by the
subtraction.

25

Step 6: Calculation of the subtractions in the numerator and the denominator

Now that the operands have the same exponent, the subtractions can take place by subtracting the mantissas.

The exponents of the results stay the same as that of the operands.

The results are: N
∑

i σiδi − (
∑

i σi)(
∑

i δi) and N
∑

i σ
2
i − (

∑
i σi)2

Step 7: Conversion of the mantissas to floating point

Due to the multiplication in step 4 and the sign extension in step 5 the mantissas have now a length of 37 bits, which is
again too long for the final division. The mantissa is converted to the same floating point format as described in step 4.

The results respectively have a mantissa of 18 bits and two exponents of 6 bits each which have to be united in the next
step.

Step 8: Unification of exponents and start of division

Division is a costly operation in FPGAs. In this implementation it is performed by an IP core byXilinxwhich is parametrized
to 18 bits for both the divisor and the dividend. The result is 33 bits wide, of which 15 bits are fractional.

The division takes 25 clock cycles to complete. The divider IP core reaches a throughput of 1 in 3 clock cycles. Thus 3 is
the lower limit for the linear regression length for the current settings of the IP core.

The exponents generated in step 7 are united to the existing ones from step 6 by addition.

Step 9 - 32: Waiting for the division to complete

The results of step 8 are pipelined until the completion of the division.

Step 33: Shifting and slicing the division result

The division result is shifted to the right by minus the exponent from step 8. After that, the lower 16 bits are sliced to form
the result of the linear regression algorithm.

The result has to be interpreted as a relative position in the range [−1, 1[, multiplied by 215.

Two signals are created for debugging purposes and are connected to the observer (see https://git.gsi.de/BEA_
HDL/FPGA_Common#23-observer):

• result out of range (1 bit): High if the absolute value of the numerator is greater than that of the denominator. This
can happen if the phases of the two input signals are not aligned. In this case the result is set to the maximum or
minimum value.

• division by zero (1 bit): Comes from the divider IP core and is high if the divisor is zero. This is very unlikely to
happen. In this case the result is set to 0.

Limitations

Allowed values for the linear regression length are: 3, 4, 5, ... , 4096

The lower limit is caused by the divider IP core which can only handle one division in three clock cycles.

The upper limit is caused by the maximum operand length of the adder in the DSP48 primitives in the FPGA. A higher
limit would be implementable at the cost of an increased resource usage and two additional clock cycles of processing
latency.

26

https://git.gsi.de/BEA_HDL/FPGA_Common#23-observer
https://git.gsi.de/BEA_HDL/FPGA_Common#23-observer

5.9 BPM averaging
The result from the BPM algorithm is sign extended and added up until the desired number of samples is reached. Only
powers of two are allowed for the averaging length. Allowing any desired number would require a general division op-
eration at the end of the averaging process, whereas a division by a power of two can be implemented by a simple shift
operation. This is why the configuration register ’log2 of BPM averaging length’ contains the dual logarithm of the aver-
aging length (see chapter 6.2.2).

The result is sliced to the same number of bits as the result from the BPM algorithm. It also has to be interpreted as
a relative position in the range [−1, 1[, multiplied by 215.

Available values for the averaging length are 1, 2, 4, ... , 1,048,576.

The upper limit is not caused by any implementation limitation, but was simply chosen because longer averaging lengths
were not assumed to be useful.

5.10 AXI infrastructure
The memory mapped data transfers inside the FPGA are handled via the AXI protocol using a star topology with a central
interconnect. The common data width is 256 bits and the common clock is the main processing clock of 125 MHz.

The AXI masters connected to the interconnect are:

• PCIe interface

• scope 0

• scope 1

• scope 2

The PCIe interface only supports an AXI data width of 128 bits, so that an AXI data width converter is used to be able to
connect it to the interconnect. A clock domain crossing also takes place despite identical frequencies, since the AXI clock
of the PCIe interface is derived directly from the PCIe reference clock and could jitter against the independently derived
main processing clock.

The AXI slaves connected to the interconnect are:

• SDRAM interface

• register bank / Block RAM

The SDRAM interface only supports an AXI clock frequency of 100 MHz, so that an AXI clock converter is used to
synchronize it to the main processing clock.

The AXI interconnect is configured to connect the scopes only to the SDRAM interface and only with write access since
other accesses are not needed.

Even though there is no need for the PCIe interface to write to the SDRAM, this access is enabled because otherwise
the PCIe driver will crash in case of an erroneous write access to the SDRAM.

27

5.11 AXI Stream infrastructure
The scopes internally use an AXI Stream bus to process the incoming data. The final data stream is converted to the AXI
protocol.

5.11.1 Scopes
There are three so called scopes for interactively storing calculation results. For the storage format of the scope data see
chapter 6.1.

Scope 0: corrected ADC data

Since the frequency of the incoming ADC data samples is identical to the AXI clock, the data samples are parallized twice
to allow flow controlled data processing. This also converts the 128 bits wide ADC data stream (8 * 16 bits) to the common
AXI data width of 256 bits.

An IP core called AXI data mover manages the write access to the SDRAM. The block size of the AXI bus accesses
is set to 4 MiBytes to allow a low protocol overhead. A block size of 256 bits (width of a single data word) would slow
down the transmission in a way that the necessary data rate to store all incoming ADC data samples would not be reached.

Scope 1: BPM results

The data rate of the BPM results is slow enough so that they do not have to be parallized before the transmission.

For the same reason, the block size of the AXI bus accesses can be set to the width of a single data word which sim-
plifies the transmission handling.

Scope 2: BPM averaging results

The data rate of the BPM averaging results is even slower than that of the BPM results, so that the same mechanism can
be used.

5.12 Configuration of peripheral devices
The peripheral devices documented in chapter 4 are initially programmed by the gateware. During operation, they can be
configured using the corresponding gateware registers (see chapter 7.1.2).

5.12.1 SPI Interface
There is an individual SPI interface for each of the two FMC boards. It is implemented as a four wire interface and connects
to the four ADCs and to the PLL on the FMC ADC boards. The choice of the communication partner is implemented via
indivial chip select lines.

5.12.2 I2C Interface
There is an individual I2C interface for each of the two FMC boards. It only connects to the VCXO. The VCXO’s transac-
tion timeout has to be kept in mind when programming it interactively (see chapter 4.1.

28

5.13 PCIe Interface
This gateware uses the Xilinx IP core DMA/Bridge Subsystem for PCI Express with the following configuration:

• PCIe speed: 5 GTransfers/s

• AXI clock frequency: 125 MHz

• reference clock frequency: 100 MHz

The PCIe reference clock is routed to the FPGA via the MMC firmware and is configured to be driven by the 100 MHz
FCLKA clock coming from the AMC connector.

5.14 SDRAM interface
For the communication with the SDRAM, an IP core by Xilinx is used. The clock frequency of the SDRAM interface’s
AXI bus is 100 MHz, so that an AXI clock converter is used to connect it to the rest of the AXI infrastructure which is
clocked at 125 MHz.

5.15 Observer
This project incorporates the observer interface from the FPGA_Common Git submodule (see https://git.gsi.de/
BEA_HDL/FPGA_Common#13-observer).

The following signals are connected to the observer inputs:

value input vector(64 bits) valid signal
0 corrected ADC data of ADCs 0 - 3 1
1 corrected ADC data of ADCs 4 - 7 1
2 BPM 0 and 1 result, additional information 1
3 BPM 2 and 3 result, additional information 1
4 BPM 0 and 1 averaging result, additional information 1
5 BPM 2 and 3 averaging result, additional information 1
6 SPI and I2C signals, MLVDS signals, FMC trigger signals 1
7 test counter 1

The rest of the multiplexer inputs are connected to zero.

29

https://git.gsi.de/BEA_HDL/FPGA_Common#13-observer
https://git.gsi.de/BEA_HDL/FPGA_Common#13-observer

6 Gateware software interface
The communication between the gateware and the software takes place via a PCIe driver by Xilinx called XDMA. There is
only one PCIe Bar in use in the gateware which maps the memory space to different physical memories on the AMC board.

The following mapping is applied:

address size memory type description
0x00000000 2 kiB Flip Flops inside FPGA, for registers
0x00004000 16 kiB Block RAM inside FPGA, for architecture information
0x00010000 64 kiB Block RAM inside FPGA, for observer
0x80000000 2 GiB SDRAM external, for scope data

Table 6.1: Memory mapping

The architecture information and the observer are documented here:
https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

6.1 PCIe Driver
Read and write accesses are mapped to virtual file accesses:

• /dev/xdma0_c2h_0 for read accesses

• /dev/xdma0_h2c_0 for write accesses

6.1.1 Reading from a register
Example in C:

u i n t 3 2 _ t a d d r e s s = 0x00000000 ;
i n t fd = open (" / dev / xdma0_c2h_0 " , O_RDWR) ;
l s e e k (fd , add r e s s , SEEK_SET) ;
u i n t 6 4 _ t v a l u e ;
r e ad (fd , &va lue , s i z e o f (u i n t 6 4 _ t)) ;

6.1.2 Writing to a register
It is important to write the whole register width of 64 bits. If a register has less than 64 bits, the unused MSBs have to be
written to any value. 32 bit write accesses will not have any effect.

Example in C:

u i n t 6 4 _ t v a l u e = 42 ;
u i n t 3 2 _ t a d d r e s s = 0x00000400 ;
i n t fd = open (" / dev / xdma0_h2c_0 " , O_RDWR) ;
l s e e k (fd , add r e s s , SEEK_SET) ;
w r i t e (fd , &va lue , s i z e o f (u i n t 6 4 _ t)) ;

30

https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features

6.1.3 Reading of scope data
Example in C:

u i n t 3 2 _ t a d d r e s s = 0x80000000 ;
i n t fd = open (" / dev / xdma0_c2h_0 " , O_RDWR) ;
l s e e k (fd , add r e s s , SEEK_SET) ;
char d a t a [1 0 2 4] ;
r e ad (fd , da t a , 1 024) ;

This example reads 1024 bytes of data from scope 0 to an array. For bigger data blocks, instead of using an array, you will
probably prefer a dynamically allocated memory region.

6.2 Scope memory
There are three scope memory regions of which the one for the corrected ADC data is the largest since it has the highest
data rate.

start address size description
0x80000000 1 GiB corrected ADC data
0xC0000000 512 MiB BPM result
0xE0000000 512 MiB BPM averaging result

Table 6.2: Scopes memory map

6.2.1 Scope 0: corrected ADC data
The corrected ADC data is stored in the following format:

address bits radix description
0x80000000 16 signed ADC 0 data (time = 0)
0x80000002 16 signed ADC 1 data (time = 0)
0x80000004 16 signed ADC 2 data (time = 0)
0x80000006 16 signed ADC 3 data (time = 0)
0x80000008 16 signed ADC 4 data (time = 0)
0x8000000A 16 signed ADC 5 data (time = 0)
0x8000000C 16 signed ADC 6 data (time = 0)
0x8000000E 16 signed ADC 7 data (time = 0)
0x80000010 16 signed ADC 0 data (time = 1)

...

Table 6.3: Corrected ADC data storage format

The corrected data is the result of four sequential operations on the raw ADC data:

1. offset correction by adding a correction summand

2. gain correction by multiplying a correction factor

3. configurable moving average filtering

4. optional high pass filtering

The correction summand, the correction factor and the filter settings can be set by individual configuration registers (see
chapter 6.2.2).

The corrected ADC data scope memory can hold up to 226 samples. At a sampling frequency of 125 MHz this corre-
sponds to a maximum capture duration of 0.537 seconds.

31

6.2.2 Scope 1: BPM result
The BPM result is stored in the following format:

address bits radix description
0xC0000000 48 unsigned time stamp, starting from gate high transition, 125 MHz (time = 0)
0xC0000006 16 unsigned effective linear regression length
0xC0000008 16 signed BPM 0 result (time = 0)
0xC000000A 16 unsigned BPM 0 variance * N (time = 0)
0xC000000C 16 unsigned BPM 0 intensity (time = 0)
0xC000000E 16 signed BPM 1 result (time = 0)
0xC0000010 16 unsigned BPM 1 variance * N (time = 0)
0xC0000012 16 unsigned BPM 1 intensity (time = 0)
0xC0000014 16 signed BPM 2 result (time = 0)
0xC0000016 16 unsigned BPM 2 variance * N (time = 0)
0xC0000018 16 unsigned BPM 2 intensity (time = 0)
0xC000001A 16 signed BPM 3 result (time = 0)
0xC000001C 16 unsigned BPM 3 variance * N (time = 0)
0xC000001E 16 unsigned BPM 3 intensity (time = 0)
0xC0000020 48 unsigned time stamp, starting from gate high transition, 125 MHz (time = 1)

...

Table 6.4: BPM result storage format

The BPM result scope memory can hold up to 224 samples. At a sampling frequency of 125 MHz and with a linear
regression length of e.g. 1024 this corresponds to a maximum capture duration of 2:17 minutes.

BPM {0 - 3} result

This value divided by 215 represents the relative beam position in the range [−1, 1[.

BPM {0 - 3} variance * N

This value divided by 216 represents the variance of the corresponding BPM result multiplied with the linear regression
length.

The scaling with the linear regression length guarantees enough LSBs to evaluate. The variance itself quantized with
16 bits would otherwise often result in zero.

BPM {0 - 3} intensity

The intensity of the beam. A value of 216 − 1 corresponds to the maximum achievable intensity at an alternating pattern
of maximum and minimum ADC samples on both inputs.

32

6.2.3 Scope 2: BPM averaging result
The BPM averaging result is stored in the following format:

address bits radix description
0xE0000000 48 unsigned time stamp, starting from gate high transition, 125 MHz (time = 0)
0xE0000006 16 unsigned average linear regression length
0xE0000008 16 signed BPM 0 averaging result (time = 0)
0xE000000A 16 unsigned BPM 0 averaging variance * N * N_avg (time = 0)
0xE000000C 16 unsigned BPM 0 averaging intensity (time = 0)
0xE000000E 16 signed BPM 1 averaging result (time = 0)
0xE0000010 16 unsigned BPM 1 averaging variance * N * N_avg (time = 0)
0xE0000012 16 unsigned BPM 1 averaging intensity (time = 0)
0xE0000014 16 signed BPM 2 averaging result (time = 0)
0xE0000016 16 unsigned BPM 2 averaging variance * N * N_avg (time = 0)
0xE0000018 16 unsigned BPM 2 averaging intensity (time = 0)
0xE000001A 16 signed BPM 3 averaging result (time = 0)
0xE000001C 16 unsigned BPM 3 averaging variance * N * N_avg (time = 0)
0xE000001E 16 unsigned BPM 3 averaging intensity (time = 0)
0xE0000020 48 unsigned time stamp, starting from gate high transition, 125 MHz (time = 1)

...

Table 6.5: BPM averaging result storage format

The BPM averaging result scope memory can hold up to 224 samples. At a sampling frequency of 125 MHz, with a linear
regression length of e.g. 1024 and with an averaging length of e.g. 1024 this corresponds to a maximum capture duration
of 39.1 hours.

BPM {0 - 3} averaging result

This value divided by 215 represents the relative beam position in the range [−1, 1[.

BPM {0 - 3} averaging variance * N * N_avg

This value divided by 216 represents the variance of the corresponding BPM averaging result multiplied with the average
linear regression length and the averaging length.

The scaling with the average linear regression length times the averaging length guarantees enough LSBs to evaluate.
The variance itself quantized with 16 bits would otherwise nearly always result in zero.

BPM {0 - 3} averaging intensity

The average intensity of the beam. A value of 216 − 1 corresponds to the maximum achievable intensity at an alternating
pattern of maximum and minimum ADC samples on both inputs.

33

6.3 Register map
6.3.1 Status registers
The following status registers can be read by software:

index address bits radix description
0 0x00000000 16 signed latest BPM 0 result
1 0x00000008 16 signed latest BPM 1 result
2 0x00000010 16 signed latest BPM 2 result
3 0x00000018 16 signed latest BPM 3 result
4 0x00000020 16 unsigned latest BPM 0 variance * N
5 0x00000028 16 unsigned latest BPM 1 variance * N
6 0x00000030 16 unsigned latest BPM 2 variance * N
7 0x00000038 16 unsigned latest BPM 3 variance * N
8 0x00000040 16 unsigned latest BPM 0 intensity
9 0x00000048 16 unsigned latest BPM 1 intensity

10 0x00000050 16 unsigned latest BPM 2 intensity
11 0x00000058 16 unsigned latest BPM 3 intensity
12 0x00000060 12 unsigned effective linear regression length
13 0x00000068 48 unsigned time from gate high transition
16 0x00000080 16 signed latest BPM 0 averaging result
17 0x00000088 16 signed latest BPM 1 averaging result
18 0x00000090 16 signed latest BPM 2 averaging result
19 0x00000098 16 signed latest BPM 3 averaging result
20 0x000000A0 16 unsigned latest BPM 0 averaging variance * N * N_avg
21 0x000000A8 16 unsigned latest BPM 1 averaging variance * N * N_avg
22 0x000000B0 16 unsigned latest BPM 2 averaging variance * N * N_avg
23 0x000000B8 16 unsigned latest BPM 3 averaging variance * N * N_avg
24 0x000000C0 16 unsigned latest BPM 0 averaging intensity
25 0x000000C8 16 unsigned latest BPM 1 averaging intensity
26 0x000000D0 16 unsigned latest BPM 2 averaging intensity
27 0x000000D8 16 unsigned latest BPM 3 averaging intensity
28 0x000000E0 12 unsigned average effective linear regression length
32 0x00000100 2 unsigned scope 0 capture status
33 0x00000108 32 unsigned scope 0 next write address
40 0x00000140 2 unsigned scope 1 capture status
41 0x00000148 32 unsigned scope 1 next write address
48 0x00000180 2 unsigned scope 2 capture status
49 0x00000188 32 unsigned scope 2 next write address

124 0x000003E0 32 unsigned build timestamp
125 0x000003E8 57 unsigned FPGA serial number
126 0x000003F0 64 unsigned module ID
127 0x000003F8 64 unsigned magic number

Table 6.6: List of status registers

0 - 3: latest BPM {0 - 3} result

This value divided by 215 represents the relative beam position in the range [−1, 1[.

4 - 7: latest BPM {0 - 3} variance * N

This value divided by 216 represents the variance of the corresponding BPM result multiplied with the linear regression
length.

The scaling with the linear regression length guarantees enough LSBs to evaluate. The variance itself quantized with
16 bits would otherwise often result in zero.

34

8 - 11: latest BPM {0 - 3} intensity

The intensity of the beam. A value of 216 − 1 corresponds to the maximum achievable intensity at an alternating pattern
of maximum and minimum ADC samples on both inputs.

12: effective linear regression length

The effective linear regression length is determined by the nominal value of the linear regression length configuration
register and the frequency of the RF pulses. If no RF pulses are present, this register should hold the value of the linear
regression length configuration register.

13: time from gate high transition

Counter value, driven by the 125 MHz main processing clock, starting from the high transition of the gate input signal.

16 - 19: latest BPM {0 - 3} averaging result

This value divided by 215 represents the relative beam position in the range [−1, 1[. Due to the averaging there should be
less noise on this value than on the BPM result.

20 - 23: latest BPM {0 - 3} averaging variance * N * N_avg

This value divided by 216 represents the variance of the corresponding BPM averaging result multiplied with the average
linear regression length and the averaging length.

The scaling with the average linear regression length times the averaging length guarantees enough LSBs to evaluate.
The variance itself quantized with 16 bits would otherwise nearly always result in zero.

24 - 27: latest BPM {0 - 3} averaging intensity

The intensity of the beam. A value of 216 − 1 corresponds to the maximum achievable intensity at an alternating pattern
of maximum and minimum ADC samples on both inputs.

28: average effective linear regression length

The average of the effective linear regression lengths of the BPM.

32, 40, 48: Scope {0, 1, 2} capture status

value capture status
0 idle
1 waiting for trigger
2 capturing
3 done

The value 0 is only present before starting the trigger for the first time. After that, the effective idle state is 3.

33, 41, 49: Scope {0, 1, 2} next write address

Address where the next data sample will be stored during the scope’s capturing process.

124: build timestamp

Time when the bitstream was created. This information can be used to identify the gateware version (together with the Git
commit information documented in https://git.gsi.de/BEA_HDL/FPGA_Common#122-gateware-information).

Format:

bits 31 - 27 bits 26 - 23 bits 22 - 17 bits 16 - 12 bits 11 - 6 bits 5 - 0
day month year (last two decimal digits) hours minutes seconds

35

https://git.gsi.de/BEA_HDL/FPGA_Common#122-gateware-information

125: FPGA serial number

The XDMA PCIe driver by Xilinx numbers the devices randomly and is not able to identify the slot number of an AMC
board. This register holds the FPGA’s unique serial number and can be used to identify an AMC board.

126: module ID

The module ID can be used to identify the type of the current bitstream.
The module ID of the Cryring BPM gateware is 0x0102010300010001.

The fields are defined as follows:

bits 63 - 56 bits 55 - 48 bits 47 - 40 bits 39 - 32 bits 31 - 16 bits 15 - 0
minor gateware version major gateware version minor board version major board version developer ID project ID

Here is an incomplete list of project IDs:

project ID project name
0x0001 Cryring BPM
0x0002 UniMon
0x0003 Rate Divider
0x0004 BLoFELD
0x0005 Resonant Transformer
0x8001 Red Pitaya

127: magic number

The magic number can be used to determine if the gateware uses the expected register format.
The value of this register is the same for all module IDs: 0xBADEAFFEDEADC0DE.

36

6.3.2 Configuration registers
The following registers can be written by software:

index address bits radix description default value
0 0x00000400 16 signed ADC 0 offset correction summand 0x0000
1 0x00000408 16 signed ADC 1 offset correction summand 0x0000
2 0x00000410 16 signed ADC 2 offset correction summand 0x0000
3 0x00000418 16 signed ADC 3 offset correction summand 0x0000
4 0x00000420 16 signed ADC 4 offset correction summand 0x0000
5 0x00000428 16 signed ADC 5 offset correction summand 0x0000
6 0x00000430 16 signed ADC 6 offset correction summand 0x0000
7 0x00000438 16 signed ADC 7 offset correction summand 0x0000
8 0x00000440 16 unsigned ADC 0 gain correction factor 0x8000
9 0x00000448 16 unsigned ADC 1 gain correction factor 0x8000

10 0x00000450 16 unsigned ADC 2 gain correction factor 0x8000
11 0x00000458 16 unsigned ADC 3 gain correction factor 0x8000
12 0x00000460 16 unsigned ADC 4 gain correction factor 0x8000
13 0x00000468 16 unsigned ADC 5 gain correction factor 0x8000
14 0x00000470 16 unsigned ADC 6 gain correction factor 0x8000
15 0x00000478 16 unsigned ADC 7 gain correction factor 0x8000
16 0x00000480 16 unsigned BPM 0 capacitance correction factor 0x8000
17 0x00000488 16 unsigned BPM 1 capacitance correction factor 0x8000
18 0x00000490 16 unsigned BPM 2 capacitance correction factor 0x8000
19 0x00000498 16 unsigned BPM 3 capacitance correction factor 0x8000
20 0x000004A0 12 unsigned BPM linear regression length - 1 0x3FF
21 0x000004A8 5 unsigned log2 of BPM averaging length 0x0A
22 0x000004B0 4 unsigned gate signal input select 0x0
23 0x000004B8 4 unsigned RF signal input select 0x8
24 0x000004C0 4 unsigned intensity normalization exponent 0x0
25 0x000004C8 10 unsigned moving average filter length - 1 0x000
26 0x000004D0 4 unsigned IIR filter enable 0x0
32 0x00000500 26 unsigned scope 0 capture length - 1 0x0000FFF
33 0x00000508 2 unsigned scope 0 trigger mode 0x2
34 0x00000510 1 binary scope 0 arm trigger 0
40 0x00000540 24 unsigned scope 1 capture length - 1 0x000FFF
41 0x00000548 2 unsigned scope 1 trigger mode 0x1
42 0x00000550 1 binary scope 1 arm trigger 0
43 0x00000558 1 binary scope 1 capture mode 0
48 0x00000580 24 unsigned scope 2 capture length - 1 0x000FFF
49 0x00000588 2 unsigned scope 2 trigger mode 0x1
50 0x00000590 1 binary scope 2 arm trigger 0
51 0x00000598 1 binary scope 2 capture mode 0

127 0x000007F8 1 binary reset 0

Table 6.7: List of configuration registers

0 - 7: ADC {0 - 7} offset correction summand

Correction summand for a possible offset deviation of the ADC. The offset correction precedes the gain correction.

8 - 15: ADC {0 - 7} gain correction factor

Correction factor for a possible gain deviation of the ADC. The default value 0x8000 corresponds to a multiplication by
1. The possible correction range is [0, 2[.

37

16 - 19: BPM {0 - 3} capacitance correction factor

The capacitances of the two corresponding capacitor plates of a single BPM can differ. Data 0 is fed unchanged into the
BPM algorithm, while data 1 is multiplied by a correction factor. The default value 0x8000 corresponds to a multiplication
by 1. The possible correction range is [0, 2[.

20: BPM linear regression length - 1

Number of samples over which the linear regression is calculated if no external RF pulse signal is present. This value is
valid for all four BPMs. If an external RF pulse signal is present, the result of the linear regression will be output and a
new calculation will be started on every rising edge of the RF pulse signal. For this to work, this register has to be set to a
value that is longer than the interval between the RF pulses.

Allowed values: 0x002 - 0xFFF

The lower limit is determined by the throughput of the divider IP core of 1 in 3 clock cycles that is used for the final
division of the BPM algorithm.

21: Log2 of BPM averaging length

Dual logarithm of the number of linear regression results over which the averaging is calculated. This value is valid for all
four BPMs.

Allowed range: 0 .. 20. Higher values will be set to the maximum allowed value. This corresponds to an averaging
length of 1, 2, 4, ... , 1,048,576.

22: Gate signal input select

value input
0 - 7 MLVDS line 0 - 7 on the backplane

8 FMC 0 TRIG input
9 FMC 1 TRIG input

The gate signal input can be switched between one of the eight MLVDS lines on the backplane and the two MMCX
connectors labeled TRIG on the FMC front panels.

23: RF signal input select

value input
0 - 7 MLVDS line 0 - 7 on the backplane

8 FMC 0 TRIG input
9 FMC 1 TRIG input

The RF signal input can be switched between one of the eight MLVDS lines on the backplane and the two MMCX con-
nectors labeled TRIG on the FMC front panels.

24: Intensity normalization exponent

The intensity calculation in the BPM algorithm is normalized to ensure that no saturation can occur. This leads to small
results during normal operation which are susceptible to quantization noise. By means of this register the normalization
can be changed to allow larger results.

With each increment of this exponent by one, the result will double. Keep in mind that the result can saturate when
setting this value to larger than zero.

25: Moving average filter length - 1

The averaging length minus 1 of the moving average filter on the ADC data. All possible values from 0 to 1023 are allowed,
resulting in an averaging length between 1 and 1024.

38

25: IIR filter enable

Bitmask which enables the IIR filter per BPM. The filter is intended to suppress a 70 kHz interference on certain BPMs.
Bit 0 enables the filter on the data of ADC 0 and 1, bit 1 on the data of ADC 2 and 3 and so on.

32, 40, 48: Scope {0, 1, 2} capture length - 1

The number of samples minus one that are stored after a scope has been triggered. Each sample consists of 16 bytes.

Scope 0 can only handle even numbers of samples. Uneven numbers will be automatically handled as the next higher
even number. For scopes 1 and 2, also uneven numbers are allowed.

33, 41, 49: Scope {0, 1, 2} trigger mode

value trigger mode
0 trigger on rising edge of gate signal
1 trigger on high state of gate signal

2, 3 trigger instantly after the trigger is armed, independent of the state of the gate signal

34, 42, 50: Scope {0, 1, 2} arm trigger

Writing a 1 to this register will arm the trigger once. The register does not have to be reset to 0 before the next arm trigger,
just write another 1 to it. If the corresponding register continuous trigger is set to 1, writing to this register does not have
any effect.

When in ’waiting for trigger’ state (see status register ’capture status’ in chapter 6.2.1), writing a 0 to this register will
cancel the arming of the trigger and the capture status will change to ’done’.

43, 51: Scope {1, 2} capture mode

value capture mode
0 capture until the number of samples defined by register {40, 48} are stored
1 the same, but cancel capturing when the gate signal goes low

A capture mode register is only available for scopes 1 and 2. Scope 0 (for corrected ADC data) always operates in capture
mode 0.

127: Reset

Writing a 1 to this register triggers a reset on the gateware, which also resets all configuration registers to their default
values.
The reset will be automatically lifted so that the register does not have to be written to 0 after initiating a reset.

39

6.4 Capturing procedure
6.4.1 Known number of samples
A typical procedure for capturing a predefinable number of samples starting from the rising edge of the gate signal is the
following:

• write the number of samples minus 1 to the configuration register capture length - 1

• write a 0 to the configuration register trigger mode

• write a 0 (= default) to the configuration register capture mode

• write a 1 to the configuration register arm trigger

• you can check the status register ’capture status’ for the progress: 1: rising edge of gate signal not yet detected, 2:
capturing is ongoing, 3: capturing completed

• you can check the current write address by polling the status register next write address

6.4.2 Unknown number of samples
BPM results are only calculated while the gate signal is high. If you want to capture a complete high period of e.g. BPM
average samples, the total number of samples is unknown. Proceed as follows:

• write the maximum value 0x1FFFFFF to the configuration register capture length - 1

• write a 0 to the configuration register trigger mode

• write a 1 to the configuration register capture mode

• write a 1 to the configuration register arm trigger

• you can check the status register capture status as above

• the value of the status register next write address will be static after completion and indicates how many samples
have been captured

40

7 Extended gateware software interface
Besides the interface documented in chapter 6 which is meant for productive use, there is an extended interface for devel-
opment and debugging purposes. The extended interface is also present in the bitstream by default.

While the productive interface is intended to be kept as downward compatible as possible, the extended interface may
be subject to major changes during the development process.

7.1 Extended register map
7.1.1 Additional status registers
The following additional status registers can be read by software:

index address bits radix description
64 0x00000200 1 binary FMC 0 SPI busy
65 0x00000208 8 unsigned FMC 0 SPI read data
66 0x00000210 1 binary FMC 0 I2C busy
67 0x00000218 8 unsigned FMC 0 I2C read data
68 0x00000220 1 binary FMC 0 PLL status
69 0x00000228 38 unsigned FMC 0 VCXO initial RFREQ
70 0x00000230 38 unsigned FMC 0 VCXO RFREQ
71 0x00000238 32 unsigned FMC 0 measured ADC clock frequency
72 0x00000240 32 unsigned FMC 0 ADC FIFO underflow counter
73 0x00000248 32 unsigned FMC 0 ADC FIFO overflow counter
80 0x00000280 1 binary FMC 1 SPI busy
81 0x00000288 8 unsigned FMC 1 SPI read data
82 0x00000290 1 binary FMC 1 I2C busy
83 0x00000298 8 unsigned FMC 1 I2C read data
84 0x000002A0 1 binary FMC 1 PLL status
85 0x000002A8 38 unsigned FMC 1 VCXO initial RFREQ
86 0x000002B0 38 unsigned FMC 1 VCXO RFREQ
87 0x000002B8 32 unsigned FMC 1 measured ADC clock frequency
88 0x000002C0 32 unsigned FMC 1 ADC FIFO underflow counter
89 0x000002C8 32 unsigned FMC 1 ADC FIFO overflow counter
96 0x00000300 16 unsigned ADC 0 max peak to peak
97 0x00000308 16 unsigned ADC 1 max peak to peak
98 0x00000310 16 unsigned ADC 2 max peak to peak
99 0x00000318 16 unsigned ADC 3 max peak to peak

100 0x00000320 16 unsigned ADC 4 max peak to peak
101 0x00000328 16 unsigned ADC 5 max peak to peak
102 0x00000330 16 unsigned ADC 6 max peak to peak
103 0x00000338 16 unsigned ADC 7 max peak to peak
111 0x00000378 1 binary SDRAM initial calibration complete

Table 7.1: List of additional status registers

64, 80: FMC {0, 1} SPI busy

Indicates that a SPI read or write access is going on. The value of this register has to be checked to be 0 before triggering
a SPI access.

41

65, 81: FMC {0, 1} SPI read data

Contains the result of a read access to a SPI register.

66, 82: FMC {0, 1} I2C busy

Indicates that an I2C read or write access is going on. The value of this register has to be checked to be 0 before triggering
an I2C access.

67, 83: FMC {0, 1} I2C read data

Contains the result of a read access to an I2C register.

68, 84: FMC {0, 1} PLL status

Value of the configurable output pin status of the AD9510 PLL and clock distribution IC. By default this pin indicates lock
status of the PLL.

69, 85: FMC {0, 1} VCXO initial RFREQ

RFREQ is a factory calibrated multiplicator to the XTAL frequency of the Si571 programmable VCXO. Before the pro-
gramming of a new output frequency this value has to be read (see chapter 4.1).

69, 86: FMC {0, 1} VCXO RFREQ

The VCXO output frequency is programmed to 125 MHz by the gateware. This register holds the value of RFREQ that
has been programmed (see chapter 4.1).

71, 87: FMC {0, 1} measured ADC clock frequency

The ADC clock is measured against the main processing clock. This register holds the number of detected ADC clock
cycles during 1 second of the main processing clock.

72, 88: FMC {0, 1} ADC FIFO underflow counter

If the ADC clock is slower than the main processing clock, samples will be repeated by the clock domain crossing FIFO
output logic. For each repetition the underflow counter will be incremented by 1.

73, 89: FMC {0, 1} ADC FIFO underflow counter

If the ADC clock is faster than the main processing clock, samples will discarded by the clock domain crossing FIFO input
logic. For each discarded sample the overflow counter will be incremented by 1.

{96 - 103}: ADC {0 - 7} max peak to peak

The maximum and the minimum value of the ADC data is determined over a free running period of 1 second. This register
contains the difference of the maximum and the minimum value.

111: SDRAM initial calibration complete

The communication to the SDRAM is controlled by an IP core by Xilinx which performs a timing calibration at start up.
The value of this register will be 1 after completion of the initial calibration.

42

7.1.2 Additional configuration registers
The following additional registers can be written by software:

index address bits radix description default value
27 0x000004D8 1 binary ADC test data enable 0
39 0x00000538 1 binary scope 0 continuous trigger 0
47 0x00000578 1 binary scope 1 continuous trigger 0
55 0x000005B8 1 binary scope 2 continuous trigger 0
56 0x000005C0 1 binary AFC LED select 0
57 0x000005C8 3 unsigned AFC LED value 0x7
58 0x000005D0 1 binary gate override 0
59 0x000005D8 1 binary gate override value 1
60 0x000005E0 8 unsigned MLVDS direction 0x00
61 0x000005E8 8 unsigned MLVDS output value 0x00
64 0x00000600 2 unsigned FMC 0 status LED select 0x0
65 0x00000608 3 unsigned FMC 0 status LED value 0x7
66 0x00000610 5 unsigned FMC 0 SPI chip select 0x0F
67 0x00000618 1 binary FMC 0 SPI read/write 0
68 0x00000620 8 unsigned FMC 0 SPI address 0x00
69 0x00000628 8 unsigned FMC 0 SPI write data 0x00
70 0x00000630 1 binary FMC 0 SPI trigger 0
71 0x00000638 1 binary FMC 0 ADC resetn 1
72 0x00000630 1 binary FMC 0 I2C read/write 0
73 0x00000638 7 unsigned FMC 0 I2C device address 0x49
74 0x00000650 8 unsigned FMC 0 I2C register address 0x00
75 0x00000658 8 unsigned FMC 0 I2C write data 0x00
76 0x00000660 1 binary FMC 0 I2C trigger 0
77 0x00000668 1 binary FMC 0 PLL resetn 1
78 0x00000670 1 binary FMC 0 clock switch select 1
79 0x00000678 1 binary FMC 0 VCXO output enable 1
80 0x00000680 2 unsigned FMC 1 status LED select 0x0
81 0x00000688 3 unsigned FMC 1 status LED value 0x7
82 0x00000690 5 unsigned FMC 1 SPI chip selec 0x0F
83 0x00000698 1 binary FMC 1 SPI read/write 0
84 0x000006A0 8 unsigned FMC 1 SPI address 0x00
85 0x000006A8 8 unsigned FMC 1 SPI write data 0x00
86 0x000006B0 1 binary FMC 1 SPI trigger 0
87 0x000006B8 1 binary FMC 1 ADC rstn 1
88 0x000006C0 1 binary FMC 1 I2C read/write 0
89 0x000006C8 7 unsigned FMC 1 I2C device address 0x49
90 0x000006D0 8 unsigned FMC 1 I2C register address 0x00
91 0x000006D8 8 unsigned FMC 1 I2C write data 0x00
92 0x000006E0 1 binary FMC 1 I2C trigger 0
93 0x000006E8 1 binary FMC 1 PLL rstn 1
94 0x000006F0 1 binary FMC 1 clock switch select 1
95 0x000006F8 1 binary FMC 1 VCXO output enable 1

Table 7.2: List of additional configuration registers - part 1

43

index address bits radix description default value
96 0x00000700 5 unsigned FMC 0 ADC 0 clock delay 0x0D
97 0x00000708 5 unsigned FMC 0 ADC 1 clock delay 0x0D
98 0x00000710 5 unsigned FMC 0 ADC 2 clock delay 0x0D
99 0x00000718 5 unsigned FMC 0 ADC 3 clock delay 0x0D

100 0x00000720 5 unsigned FMC 0 ADC 0 data delay 0x00
101 0x00000728 5 unsigned FMC 0 ADC 1 data delay 0x00
102 0x00000730 5 unsigned FMC 0 ADC 2 data delay 0x00
103 0x00000738 5 unsigned FMC 0 ADC 3 data delay 0x00
104 0x00000730 5 unsigned FMC 1 ADC 0 clock delay 0x0D
105 0x00000738 5 unsigned FMC 1 ADC 1 clock delay 0x0D
106 0x00000750 5 unsigned FMC 1 ADC 2 clock delay 0x0D
107 0x00000758 5 unsigned FMC 1 ADC 3 clock delay 0x0D
108 0x00000760 5 unsigned FMC 1 ADC 0 data delay 0x00
109 0x00000768 5 unsigned FMC 1 ADC 1 data delay 0x00
110 0x00000770 5 unsigned FMC 1 ADC 2 data delay 0x00
111 0x00000778 5 unsigned FMC 1 ADC 3 data delay 0x00

Table 7.3: List of additional configuration registers - part 2

17: ADC test data enable

If set to 1, all eight ADC data inputs will be overridden by a counter value which is incremented by 1 every 125 MHz clock
cycle.

39, 47, 55: Scope {0, 1, 2} continuous trigger

If set to 1, the trigger is armed and will be rearmed automatically after every capture completion.

56: AFC LED select

There is one tricolor LED at the center of the AFC front panel labeled L3 that can be controlled by the gateware.

value input
0 PCIe reference clock, blink frequency divided by 227, white
1 static value from register 113 ’AFC LED value’

57: AFC LED value

Static lighting pattern if register 112 ’AFC LED select’ = 1.

bit color
0 red
1 green
2 blue

58: Gate override

For testing purposes without an external gate signal this register can be set to 1 to simulate a gate signal via the register
115 ’gate override value’.

59: Gate override value

Can be used to simulate a gate signal when register 114 ’gate override’ is 1.

60: MLVDS direction

Determines the direction of the eight MLVDS lines on the AMC connector. A ’0’ corresponds to an input to the FPGA
and a ’1’ to an output from the FPGA.

44

61: MLVDS output value

Determines the logic levels of the eight MLVDS lines if they are configured as outputs (see previous register).

64, 80: FMC {0, 1} status LED select

There is one tricolor LED on the FMC front panel labeled status that can be controlled by the gateware.

value input
0 ADC clock, blink frequency divided by 227, green if AD9510 PLL is in lock, otherwise red
1 AD9510 monitoring clock, blink frequency divided by 227

2, 3 static value from register ’status LED value’

65, 81: FMC {0, 1} status LED value

The static lighting pattern defined by this register becomes active if the corresponding register ’status LED select’ is set to
2 or 3.

bit color
0 red
1 green
2 blue

66, 82: FMC {0, 1} SPI cs

Chip select signals (active high) of the SPI bus to the four ADCs and to the AD9510 PLL and clock distribution.

bit device
0 ADC 0
1 ADC 1
2 ADC 2
3 ADC 3
4 PLL and clock distribution

67, 83: FMC {0, 1} SPI read/write

0: write mode, 1: read mode

68, 84: FMC {0, 1} SPI address

The address of the register that shall be accessed.

69, 85: FMC {0, 1} SPI write data

The data that shall be written to a register.

70, 86: FMC {0, 1} SPI trigger

Write a 1 to this register to start a read or write access on the SPI bus. The register does not have to be reset to 0 before
the next SPI trigger, just write another 1 to it.

71, 87: FMC {0, 1} ADC resetn

Low active reset signal to the four ADCs in parallel. Tie to 0 and back to 1 to initiate a reset.

72, 88: FMC {0, 1} I2c read/write

0: write mode, 1: read mode

45

73, 89: FMC {0, 1} I2C device address

The address of the connected VCXO is 0x49.

74, 90: FMC {0, 1} I2C register address

The address of the register that shall be accessed.

75, 91: FMC {0, 1} I2C write data

The data that shall be written to a register.

76, 92: FMC {0, 1} I2C trigger

Write a 1 to this register to start a read or write access on the I2C bus. The register does not have to be reset to 0 before
the next I2C trigger, just write another 1 to it.

77, 93: FMC {0, 1} PLL resetn

Low active reset signal to the PLL and clock distribution. Tie to 0 and back to 1 to initiate a reset.

78, 94: FMC {0, 1} Clock switch select

There is a separate clock switch in front of the AD9510 PLL reference clock input.

value connect to
0 MMCX connector labeled REF on the front panel of the FMC board
1 clock output from the FPGA via the FMC connector

79, 95: FMC {0, 1} VCXO output enable

Enables the frequency output of the VCXO.

96 - 99 and 104 - 107: FMC {0, 1} ADC {0 - 3} clock delay

There is a configurable input delay for setting the correct digital interface timing for both the clock and the data signals.
Increasing this value increases the delay of the clock, so that the data is sampled later.

100 - 103 and 108 - 111: FMC {0, 1} ADC {0 - 3} data delay

See above. Increasing this value increases the delay of the data, so that the data is sampled at an earlier position.

46

8 Hardware properties

8.1 LEDs driven by the FPGA gateware
There are three tricolor LEDs connected to FPGA pins:

• L3 in the center of the AFC front panel: Currently displays the PCIe reference clock divided by 227 in white.

• LD1 (v1.0) or STATUS (v1.2 and v2.3) on the right of the two FMC board’s front panels: Currently display the ADC
clock frequencies divided by 227 in green if the PLLs indicate a lock, otherwise red.

Each tricolor LED consists of three independent LEDs (red, green and blue).

8.2 Differences between FMC ADC 250 M 16B 4CH versions
The LD1 (v1.0) or STATUS (v1.2 and v2.3) LED on the right of the FMC board front panel is connected differently between
v1.0 and (v1.2 and v2.3). When using the location constraints for v1.2 and v2.3 together with a v1.0 board, the LED lights
as follows:

• wanted red: off

• wanted green: lights green

• wanted blue: lights red

Also, the MMCX input TRIG seems to be connected differently on v1.0. Feeding HF-Pulses into v1.0 boards does not
work with the current bitstream.

8.3 Analog characteristics
8.3.1 ADC input filter
The FMC ADC boards were originally designed for very high input frequencies and are equipped with input filters that
show a pronounced high pass characteristic. There are different versions of the boards which have a different ADC input
filter circuitry.

Figure 8.1: Schematics of the original ADC input filter of versions 1.0 and 1.2. Image taken from [12]

47

Figure 8.2: Schematics of the original ADC input filter of version 2.3. Image taken from [13]

The part labeled TR1(B) BD0205F5050A00 is a balun with an operating range of 70 - 1000 MHz [14]. Lower frequencies
are severely attenuated.

For being able to use the FMC ADC boards in the Cryring BPM system, the baluns have to be replaced by more suit-
able components.

Two approaches have been implemented on versions 1.0 and 1.2 (probably by Piotr Miedzik):

1. each balun is replaced by two wires

2. each balun is replaced by two capacitors of probably 100 nF (hint in an old email)

Figure 8.3: v1.2 ADC input filter: balun <i>TR1B</i> replaced by two capacitors

Figure 8.4: v1.0 ADC input filter: balun <i>TR1B</i> replaced by two wires

48

Figure 8.5: Original v2.3 ADC input filter

The heatspreader under the bottom of the FMC ADC board has to be unscrewed to access the baluns.

There is a significant difference in the ADC input filter circuitry between versions 1.0 and 1.2 and version 2.3. In ver-
sion 2.3 the transmission line transformers L11 {A, B, C, D} have been removed and the RC filter has been modified.

Figure 8.6 shows the magnitude frequency responses of the original v2.3 input filter and of the two modifications of the
v1.0 and v1.2 input filters. The diagram data was created by using a sine signal from a signal generator with an amplitude
of 2 Vpp and by measuring the maximum amplitude swing of the raw ADC data.

Figure 8.6: Magnitude frequency responses of different ADC input filters

49

8.4 Required changes for PLL lock
For being able to drive the reference clock of the PLLs on the FMCADC boards from an FPGA output pin, a pullup resistor
indicating the clock direction has to be desoldered. The resistor is labeled R132 in the FMC ADC schematic [13]. Figure
8.7 shows the location of the resistor.

Without this change slight clock frequency differences between the processing clock on the AFC board and the ADC
clocks on the FMC boards occur. There are synchronization FIFOs which ensure correct clock domain crossings, but in
this case a small fraction of ADC samples might have to be discarded or repeated once, depending on which frequency
is higher. This will always affect all the samples of a FMC board in parallel, so that no differences between the two input
data streams of a single BPM will occur and no measurable effect on the BPM results should be observed.

With this changes applied and with the correct settings of the PLL, the ADC samples of both FMC boards will arrive
exactly in parallel and no samples will be lost or repeated.

Update: Even though removing the resistor is advisable, the PLL also locks with it in place. Not all the boards in the
productive setup have been changed.

Figure 8.7: Pullup resistor which needs to be removed for the PLL to lock

50

8.5 List of ADC-FMC boards
Label AFC number FMC number remarks

ADC 1 4 2 from old setup
ADC 2 from old setup, port 3 has lower amplitude (0.8) and a phase shift
ADC 3 1 2 from old setup
ADC 4 from old setup, works fine
ADC 5 4 1 from old setup
ADC 6 from old setup, port 3 has an offset of about -2000 LSBs
ADC 7 from old setup, port 2 has higher amplitude (1.15) and a phase shift
ADC 8 from old setup, port 3 does not work, port 2 equal to that of ADC 7
ADC 9 from old setup, not tested

ADC 10 1 1 old spare
ADC 11 5 2 old spare
ADC 12 2 1 new
ADC 13 2 2 new
ADC 14 3 1 new
ADC 15 5 1 new

8.6 Productive setup
The following AFC version 3.1 boards are installed in the productive setup in the Cryring container:

AFC number FPGA serial number FMC 1 FMC 2 AMC slot
1 0x048A82110D1B05C ADC 10 ADC 3 3
2 0x008182110D1B05C ADC 12 ADC 13 4
3 0x010A82110D1B05C ADC 14 - 5
4 0x068B48160E47054 ADC 5 ADC 1 6
5 0x018D5C24235885C ADC 15 ADC 11 7

The FPGA serial number is not printed anywhere, but can only be read from the DNA_PORT primitive by the gate-
ware. In this gateware the FPGA serial number is read out and stored in a register (see chapter 6.2.1).

The signal cables are connected as follows:

51

signal AFC number FMC number port number
YR2DX1HL 1 1 1
YR2DX1HR 1 1 2
YR2DX2VO 1 1 3
YR2DX2VU 1 1 4
YR10DX1HL 1 2 1
YR10DX1HR 1 2 2
YR10DX2VO 1 2 3
YR10DX2VU 1 2 4
YR3DX3VO 2 1 3
YR3DX3VU 2 1 4
YR3DX4HL 2 1 1
YR3DX4HR 2 1 2
YR12DX1HL 2 2 1
YR12DX1HR 2 2 2
YR12DX2VO 2 2 3
YR12DX2VU 2 2 4
YR7DX1HL 3 1 1
YR7DX1HR 3 1 2
YR7DX2VO 3 1 3
YR7DX2VU 3 1 4
YR3DX1HL 4 1 1
YR3DX1HR 4 1 2
YR3DX2VO 4 1 3
YR3DX2VU 4 1 4
YR8DX1HL 4 2 1
YR8DX1HR 4 2 2
YR8DX2VO 4 2 3
YR8DX2VU 4 2 4
YR6DX1HL 5 1 1
YR6DX1HR 5 1 2
YR6DX2VO 5 1 3
YR6DX2VU 5 1 4
YR11DX1HL 5 2 1
YR11DX1HR 5 2 2
YR11DX2VO 5 2 3
YR11DX2VU 5 2 4

52

9 Test coverage

9.1 BPM algorithm
9.1.1 Simulation
This test simulates the VHDL code of the gateware and is automatically run by the CI/CD pipelines of Gitlab.

All ADC data inputs are driven by the same repeated pattern of positive and negative values, but with different ampli-
tudes.

For the same patterns on both inputs of a BPM with the amplitudes A0 and A1,

δi can be expressed as c · σi with c = A0−A1
A0+A1

and equation 4.1 simplifies to:

x =
N

∑
i σiδi − (

∑
i σi)(

∑
i δi)

N
∑

i σ
2
i − (

∑
i σi)2 = c = A0 −A1

A0 +A1
(9.1)

so that the expected BPM result can be calculated as:

x = 215 · A0−A1
A0+A1

BPM ADC relative amplitudes A0, A1 expected BPM result simulated BPM result
0 0 1 10922.67 10922

1 1/2
1 2 1/2 -10922.67 -10923

3 1
2 4 1 0 0

5 1
3 6 1 25486.22 25487

7 1/8

The simulation results are consistent with the expectations considering possible numeric calculation deviations in the
numerous calculation steps, which might influence the least significant bits.

9.1.2 Using a function generator as data source
Digital gain setting

The following measurement was made using a function generator which was configured to output two phase aligned sines
with an amplitude of 2Vpp which were connected to the two inputs of a BPM.

The linear regression length and the averaging length were both set to 1024.

Before starting the measurement, the digital gain of one of the two ADC inputs was corrected so that the BPM aver-
aging result equaled 0.

After that, the digital gain correction of the other ADC input was used to set different amplitudes in order to avoid possible
nonlinearities of the function generator gain.

The results were read from the FPGA Observer GUI which displays the BPM results divided by 215.

53

relative amplitude expected BPM result measured BPM result
1/8 0.7 0.778
2/8 0.6 0.600
3/8 0.45 0.454
4/8 0.3 0.333
5/8 0.2308 0.230
6/8 0.1429 0.142
7/8 0.06 0.066
8/8 0 0.000

The measurement results are consistent with the expectations considering noise and possible numeric calculation devi-
ations in the numerous calculation steps, which might influence the least significant bits.

9.2 Reliability tests
A test of the BPM scope and the BPM averaging scope was run overnight. The two inputs of a BPM were fed by two
function generator outputs with the following settings:

• sine signal

• frequency: 1 MHz

• output to ADC0: 2.001 Vpp

• output to ADC1: 0.667 Vpp

According to equation ??, the expected BPM result for the chosen input amplitudes is 0.5.

The test was run for 12 hours, during which the scopes were read continuously and histograms of the occurring results
were created.

Figure 9.1: BPM result histogram

54

The gateware was configured as follows:

• ADC1 gain correction: 0x8398 BPM averaging result = 0.5

• linear regression length: 1024

• averaging length: 1024

• number of samples per capture: 1024

Figure 9.2: BPM averaging result histogram

The resulting histograms do not show Gaussian distributions, but still seem to be reasonably confined. The deviations
from Gaussian distributions might have been caused by temperature shifts during the night which might have affected the
amplitudes.

55

References
[1] A. Reiter, R. Singh: Comparison of beam position calculation methods for application in digital acquisition systems.

*Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment*, February 2018, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_
BPM_Algorithm.pdf

[2] P. Miedzik, H. Bräuning, T. Hoffmann, A. Reiter, R. Singh: A MicroTCA based beam position monitoring system at
CRYRING@ESR. *16th Int. Conf. on Accelerator and Large Experimental Control Systems, Barcelona, Spain*, Oc-
tober 2017, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_architecture.pdf

[3] A. Reiter, W. Kaufmann, R. Singh, P. Miedzik, T. Hoffmann, H. Bräuning: The CRYRING BPM cookbook, March
2015, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Cryring_BPM_System_Overview.pdf

[4] AMC FMCCarrier (AFC) Git repository, Open Hardware Repository, https://ohwr.org/project/afc/wikis/
home

[5] Xilinx: 7 Series FPGAs Data Sheet: Overview, https://www.xilinx.com/support/documentation/data_
sheets/ds180_7Series_Overview.pdf

[6] Silicon Labs: Timing part decoder web page, https://www.silabs.com/timing/lookup-customize

[7] Silicon Labs: Si571 datasheet, https://www.silabs.com/documents/public/data-sheets/si570.pdf

[8] Analog Devices: AD9510 datasheet, https://www.analog.com/media/en/technical-documentation/
data-sheets/AD9510.pdf

[9] Renesas: ISLA216P datasheet, https://www.renesas.com/us/en/www/doc/datasheet/isla216p.pdf

[10] Xilinx: Artix 7 datasheet: DC and AC Switching Characteristics, https://www.xilinx.com/support/
documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf

[11] AFC v3.1 schematics, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_AFC_v3.
1.pdf

[12] FMC ADC 250M 16B 4ch v1.2 schematics, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/
Schematics_FMC_ADC_250M_16B_4ch_v1_2.pdf

[13] FMC ADC 250M 16B 4ch v2.3 schematics, https://github.com/lnls-dig/fmc250-hw/blob/master/
circuit_board/ADC.SchDoc

[14] Anaren: Balun BD0205F5050A00 datasheet, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/
Balun_BD0205F5050A00_datasheet.pdf

56

https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_Algorithm.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_Algorithm.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_architecture.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Cryring_BPM_System_Overview.pdf
https://ohwr.org/project/afc/wikis/home
https://ohwr.org/project/afc/wikis/home
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.silabs.com/timing/lookup-customize
https://www.silabs.com/documents/public/data-sheets/si570.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9510.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9510.pdf
https://www.renesas.com/us/en/www/doc/datasheet/isla216p.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_AFC_v3.1.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_AFC_v3.1.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_FMC_ADC_250M_16B_4ch_v1_2.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_FMC_ADC_250M_16B_4ch_v1_2.pdf
https://github.com/lnls-dig/fmc250-hw/blob/master/circuit_board/ADC.SchDoc
https://github.com/lnls-dig/fmc250-hw/blob/master/circuit_board/ADC.SchDoc
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Balun_BD0205F5050A00_datasheet.pdf
https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Balun_BD0205F5050A00_datasheet.pdf

	 Documentation formats
	 Resources
	1 Introduction
	1.1 Measurement principle
	1.2 Processing hardware

	2 BPM algorithm
	2.1 Capacitance correction
	2.2 Least squares algorithm
	2.2.1 Variance
	2.2.2 Intensity

	2.3 Averaging
	2.3.1 Variance
	2.3.2 Intensity

	2.4 Control signals
	2.4.1 Gate
	2.4.2 RF pulse

	2.5 Parameters
	2.5.1 Least squares algorithm calculation length
	2.5.2 Averaging length

	3 Common FPGA based projects documentation
	3.1 Common monitoring and control features
	3.2 FPGA Observer
	3.3 Build flow and simulation
	3.4 Helper scripts
	3.5 Continuous integration environment
	3.6 Programming and hardware configuration

	4 Peripheral devices
	4.1 Si571 programmable VCXO
	4.1.1 Programming the frequency
	4.1.2 Configuration

	4.2 AD9510 PLL and clock distribution
	4.2.1 Configuration

	4.3 ISLA216P ADC
	4.3.1 Configuration

	5 Gateware implementation
	5.1 Clocking
	5.1.1 PCIe reference clock
	5.1.2 FMC ADC clocks

	5.2 Resets
	5.2.1 PLL not in lock
	5.2.2 PCIe reset
	5.2.3 Reset button

	5.3 Data flow diagram
	5.4 Input delays
	5.4.1 Calculation of optimal delay values
	5.4.2 Chosen delay values

	5.5 Clock domain crossings
	5.6 Gate signal
	5.7 RF signal
	5.8 BPM algorithm
	5.8.1 Pipeline steps performed every clock cycle
	5.8.2 Pipeline steps performed with a reduced data rate

	5.9 BPM averaging
	5.10 AXI infrastructure
	5.11 AXI Stream infrastructure
	5.11.1 Scopes

	5.12 Configuration of peripheral devices
	5.12.1 SPI Interface
	5.12.2 I2C Interface

	5.13 PCIe Interface
	5.14 SDRAM interface
	5.15 Observer

	6 Gateware software interface
	6.1 PCIe Driver
	6.1.1 Reading from a register
	6.1.2 Writing to a register
	6.1.3 Reading of scope data

	6.2 Scope memory
	6.2.1 Scope 0: corrected ADC data
	6.2.2 Scope 1: BPM result
	6.2.3 Scope 2: BPM averaging result

	6.3 Register map
	6.3.1 Status registers
	6.3.2 Configuration registers

	6.4 Capturing procedure
	6.4.1 Known number of samples
	6.4.2 Unknown number of samples

	7 Extended gateware software interface
	7.1 Extended register map
	7.1.1 Additional status registers
	7.1.2 Additional configuration registers

	8 Hardware properties
	8.1 LEDs driven by the FPGA gateware
	8.2 Differences between FMC ADC 250 M 16B 4CH versions
	8.3 Analog characteristics
	8.3.1 ADC input filter

	8.4 Required changes for PLL lock
	8.5 List of ADC-FMC boards
	8.6 Productive setup

	9 Test coverage
	9.1 BPM algorithm
	9.1.1 Simulation
	9.1.2 Using a function generator as data source

	9.2 Reliability tests

	 References

