Solving Ordinary Differential Equations (ODEs) using Python

Simple differential equations can be solved numerically using the Euler-Cromer method,
but more complicated differential equations may require a more sophisticated method.
The scipy library for Python contains numerous functions for scientific computing and
data analysis. It includes the function odeint for numerically solving sets of first-order,
ordinary differential equations (ODEs) using a sophisticated algorithm. Any set of
differential equations can be written in the required form. The example below calculates
the solution to the following second-order differential equation,

d’y dy
—>=ay+b—.
ar P
It can be rewritten as the following two first-order differential equations,
dy dy’
—=y’ and =ay+by’.
dr y ’ Yy T by

Notice that the first of these equations is really just a definition. In Python, the function y
and its derivative y” will be part of elements of an array. The function y will be the first
element y[0] (remember that the lowest index of an array is zero, not one) and the
derivative y” will be the second element y[1]. In this case, you can think of the index as
how many derivatives are taken of the function. In this notation, the differential
equiations are

—=y[1] and d{d—[tz]=ay[0]+bY[l]-

The odeint function requires a function (called deriv in the example below) that will
return the first derivative of each of element in the array. In other words, the first element
returned is dy[0]/dt and the second element is dy[l]/dt, which are both functions of
y[0] and y[1]. You must also provide initial values for y[0] and y[1] which are placed in
the array yinit in the example below. Finally, the values of the times at which solutions
are desired are provided in the array time.

from scipy import odeint
from pylab import * # for plotting commands

def deriv(y,t): # return derivatives of the array y
a=-2.0
b = -0.1
return array([y[l], a*y[O0]+b*y[1]])

time = linspace(0.0,10.0,1000)
yinit = array([0.0005,0.2]) # initial values
y = odeint(deriv,yinit,time)

figure()

plot(time,y[:,0]) # y[:,0] is the first column of y
xlabel(‘t"’)

ylabel(‘y’)

show ()

Note that odeint returns the values of both the function y[0]=y and its derivative
y[1]=y’ at each time. In the example above, the function is plotted versus the time.

For a second example, suppose that you want to solve the following coupled, second-
order differential equations,

d’x d’ dx
> =ay and Z:b+c—.
dt dt dt
In order to rewrite these equations as a set of first-order differential equations, start by
defining

d. d
Ty and 2= v,
dt dt
The original equations can be written as
dx’ dy’
al =ay and Y o bhtex’.
dt t

To use odeint, the four first-order equations must be written as elements of an array. If
we make the definitions,

do]=x. Zlf=x", 7[2]=y. and Z[3]=y",
then the four equations become

dz[0] dz[1] dz[2] dz[3]
——==z|l|, —=az]2|, ——=73], and ——=b+cz|l].

g =l T m=af2, == =23l and = cz[1]
These equations are now in a form necessary for the derivative function, which would be
an array with four elements. Notice that the index of the array is not the number of
derivatives of a single function in this case.

Exercise:
An example of a differential equation that exhibits chaotic behavior is
3 2 2
Ix_ o4y (@) ~x.
dt dt dt
(a) Write the differential equation as a set of first-order differential equations.
(b) Modify the example program to solve the equations with the initial conditions of
x=0, dx/dt=0,and d’x/dt* =1.
(c) Plot the results for ¢ from 0 to 100.

Additional documentation is available at:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
http://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

