Simple differential equations can be solved numerically using the Euler-Cromer method, but more complicated differential equations may require a more sophisticated method. The scipy library for Python contains numerous functions for scientific computing and data analysis. It includes the function odeint for numerically solving sets of first-order, ordinary differential equations (ODEs) using a sophisticated algorithm. Any set of differential equations can be written in the required form. The example below calculates the solution to the following second-order differential equation,

$$
\frac{d^{2} y}{d t^{2}}=a y+b \frac{d y}{d t} .
$$

It can be rewritten as the following two first-order differential equations,

$$
\frac{d y}{d t}=y^{\prime} \quad \text { and } \quad \frac{d y^{\prime}}{d t}=a y+b y^{\prime} .
$$

Notice that the first of these equations is really just a definition. In Python, the function y and its derivative y^{\prime} will be part of elements of an array. The function y will be the first element $y[0]$ (remember that the lowest index of an array is zero, not one) and the derivative y^{\prime} will be the second element $y[1]$. In this case, you can think of the index as how many derivatives are taken of the function. In this notation, the differential equiations are

$$
\frac{d y[0]}{d t}=y[1] \quad \text { and } \quad \frac{d y[2]}{d t}=a y[0]+b y[1] .
$$

The odeint function requires a function (called deriv in the example below) that will return the first derivative of each of element in the array. In other words, the first element returned is $d y[0] / d t$ and the second element is $d y[1] / d t$, which are both functions of $y[0]$ and $y[1]$. You must also provide initial values for $y[0]$ and $y[1]$ which are placed in the array yinit in the example below. Finally, the values of the times at which solutions are desired are provided in the array time.

```
from scipy import odeint
from pylab import * # for plotting commands
def deriv(y,t): # return derivatives of the array y
        a = -2.0
    b}=-0.
    return array([ y[1], a*y[0]+b*y[1] ])
time = linspace(0.0,10.0,1000)
yinit = array([0.0005,0.2]) # initial values
y = odeint(deriv,yinit,time)
figure()
plot(time,y[:,0]) # y[:,0] is the first column of y
xlabel('t')
ylabel('y')
show()
```

Note that odeint returns the values of both the function $y[0]=y$ and its derivative $y[1]=y^{\prime}$ at each time. In the example above, the function is plotted versus the time.

For a second example, suppose that you want to solve the following coupled, secondorder differential equations,

$$
\frac{d^{2} x}{d t^{2}}=a y \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=b+c \frac{d x}{d t}
$$

In order to rewrite these equations as a set of first-order differential equations, start by defining

$$
\frac{d x}{d t}=x^{\prime} \quad \text { and } \quad \frac{d y}{d t}=y^{\prime} .
$$

The original equations can be written as

$$
\frac{d x^{\prime}}{d t}=a y \quad \text { and } \quad \frac{d y^{\prime}}{d t}=b+c x^{\prime} .
$$

To use odeint, the four first-order equations must be written as elements of an array. If we make the definitions,

$$
z[0]=x, \quad z[1]=x^{\prime}, \quad z[2]=y, \quad \text { and } \quad z[3]=y^{\prime},
$$

then the four equations become

$$
\frac{d z[0]}{d t}=z[1], \quad \frac{d z[1]}{d t}=a z[2], \quad \frac{d z[2]}{d t}=z[3], \quad \text { and } \quad \frac{d z[3]}{d t}=b+c z[1] .
$$

These equations are now in a form necessary for the derivative function, which would be an array with four elements. Notice that the index of the array is not the number of derivatives of a single function in this case.

Exercise:

An example of a differential equation that exhibits chaotic behavior is

$$
\frac{d^{3} x}{d t^{3}}=-2.017 \frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}-x
$$

(a) Write the differential equation as a set of first-order differential equations.
(b) Modify the example program to solve the equations with the initial conditions of $x=0, d x / d t=0$, and $d^{2} x / d t^{2}=1$.
(c) Plot the results for t from 0 to 100 .

Additional documentation is available at: http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html http://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

