The definitive guide on how to use static, class or abstract methods in ...

1von9

The definitive guide on
how to use static, class or
abstract methods in Python

Thursday
01 August 2013

Doing code reviews is a great way to discover
things that people might struggle to 5}
comprehend. While proof-reading OpenStack (/blog
patches (http://review.openstack.org) recently, | /tags/python)
spotted that people were not using correctly the
various decorators Python provides for methods.
So here's my attempt at providing me a link to
send them to in my next code reviews. :-)

How methods work
in Python

A method is a function that is stored as a class attribute. You can
declare and access such a function this way:

>>> class Pizza(object):
def __init__ (self, size):
self.size = size
def get_size(self):
return self.size

>>> Pizza.get_size
<unbound method Pizza.get_size>

What Python tells you here, is that the attribute get _size of the
class Pizza is a method that is unbound. What does this mean?
We'll know as soon as we'll try to call it:

>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unbound method get_size() must be called with Pizza in
stance as first argument (got nothing instead)

We can't call it because it's not bound to any instance of Pizza.
And a method wants an instance as its first argument (in Python
2 it must be an instance of that class; in Python 3 it could be
anything). Let's try to do that then:

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

Julien
Danjou

Free Software

hacker
(http://en.wikipedia.org
/wiki/Hacker_(programmer_
developer and

consultant

working

freelance (/).

Project Technical

Leader for

OpenStack
Ceilometer
(http://launchpad.net
/ceilometer),

former member

of the

OpenStack
(http://openstack.org)
technical

committee.

Also a Debian
(http://debian.org)
developer, the

original author of

the awesome

window

manager
(http://awesome.naquadah.
and a developer

of GNU Emacs.

(/#contact)
m (/blog
/index.xml) =

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ...

2von9

>>> Pizza.get_size(Pizza(42))
42

It worked! We called the method with an instance as its first
argument, so everything's fine. But you will agree with me if | say
this is not a very handy way to call methods; we have to refer to
the class each time we want to call a method. And if we don't
know what class is our object, this is not going to work for very
long.

So what Python does for us, is that it binds all the methods from
the class Pizza to any instance of this class. This means that the
attribute get_size of an instance of Pizza is a bound method: a
method for which the first argument will be the instance itself.

>>> Pizza(42).get_size

<bound method Pizza.get_size of <__main__.Pizza object at @x7f313
8827910>>

>>> Pizza(42).get_size()

42

As expected, we don't have to provide any argument to get_size,
since it's bound, its self argument is automatically set to our Pizza
instance. Here's a even better proof of that:

>>> m = Pizza(42).get_size
>>> m()
42

Indeed, you don't even have to keep a reference to your Pizza
object. Its method is bound to the object, so the method is
sufficient to itself.

But what if you wanted to know which object this bound method
is bound to? Here's a little trick:

>>> m = Pizza(42).get_size

>>> m.__self

<__main__.Pizza object at ©x7f3138827910>
>>> # You could guess, Look at this:

>>> m == m.__self .get size
True

Obviously, we still have a reference to our object, and we can find
it back if we want.

In Python 3, the functions attached to a class are not considered
as unbound method anymore, but as simple functions, that are
bound to an object if required. So the principle stays the same,

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

(https://github.com/jd)

-
(==

(http://twitter.com
/juldanjou) B4

(http://plus.google.com
/108793797474967511035?pr

in]

(http://linkedin.com
/in/juliendanjou)

Tweets Follow

Julien Danjou 20 Mar
@juldanjou
I'm now available to talk

about #Python and various
stuff on @bbl_fr :)

Expand

Julien Danjou 18 Mar
@juldanjou
Tomorrow is the 7th
OpensStack France meetup,
join us to talk about SDN
meetup.com/OpenStack-Fran

Show Summary

@0 Julien Danjou 17 Mar

Tweet to @juldanjou

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ... http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

the model is just simplified.

>>> class Pizza(object):
def __init__(self, size):
self.size = size
def get_size(self):
return self.size

>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dde>

Static methods

Static methods are a special case of methods. Sometimes, you'll
write code that belongs to a class, but that doesn't use the object
itself at all. For example:

class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y

def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)

In such a case, writing mix_ingredients as a non-static method
would work too, but it would provide it a self argument that
would not be used. Here, the decorator @staticmethod buys us
several things:

e Python doesn't have to instantiate a bound-method for
each Pizza object we instiantiate. Bound methods are
objects too, and creating them has a cost. Having a static
method avoids that:

>>> Pizza().cook is Pizza().cook

False

>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True

>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True

e |t eases the readability of the code: seeing @staticmethod,
we know that the method does not depend on the state of
object itself;

e |t allows us to override the mix_ingredients method in a
subclass. If we used a function mix_ingredients defined at the
top-level of our module, a class inheriting from Pizza
wouldn't be able to change the way we mix ingredients for

3von9 22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ... http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

our pizza without overriding cook itself.

Class methods

Having said that, what are class methods? Class methods are
methods that are not bound to an object, but to... a class!

>>> class Pizza(object):
radius = 42
@classmethod
def get_radius(cls):
return cls.radius

>>>

>>> Pizza.get_radius

<bound method type.get_radius of <class
>>> Pizza().get_radius

<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius

True

>>> Pizza.get_radius()

42

__main__.Pizza'>>

Whatever the way you use to access this method, it will be always
bound to the class it is attached too, and its first argument will be
the class itself (remember that classes are objects too).

When to use this kind of methods? Well class methods are mostly
useful for two types of methods:

e Factory methods, that are used to create an instance for a
class using for example some sort of pre-processing. If we
use a @staticmethod instead, we would have to hardcode
the Pizza class name in our function, making any class
inheriting from Pizza unable to use our factory for its own
use.

class Pizza(object):
def __init__ (self, ingredients):
self.ingredients = ingredients

@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())

e Static methods calling static methods: if you split a static
methods in several static methods, you shouldn't hard-code
the class name but use class methods. Using this way to
declare ou method, the Pizza name is never directly
referenced and inheritance and method overriding will work
flawlessly

4 von 9 22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ...

5von 9

class Pizza(object):
def __init__ (self, radius, height):
self.radius = radius
self.height = height

@staticmethod
def compute_circumference(radius):
return math.pi * (radius ** 2)

@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_circumference(radius)

def get_volume(self):
return self.compute_volume(self.height, self.radius)

Abstract methods

An abstract method is a method defined in a base class, but that
may not provide any implementation. In Java, it would describe
the methods of an interface.

So the simplest way to write an abstract method in Python is:

class Pizza(object):
def get_radius(self):
raise NotImplementedError

Any class inheriting from Pizza should implement and override
the get_radius method, otherwise an exception would be raised.

This particular way of implementing abstract method has a
drawback. If you write a class that inherits from Pizza and forget
to implement get_radius, the error will only be raised when you'll
try to use that method.

>>> Pizza()
<__main__.Pizza object at @x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in get_radius
NotImplementedError

There's a way to triggers this way earlier, when the object is being
instantiated, using the abc (http://docs.python.org/2/library
/abc.html) module that's provided with Python.

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ...

6 von9

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""

Using abc and its special class, as soon as you'll try to instantiate
BasePizza or any class inheriting from it, you'll get a TypeError.

>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class BasePizza with abstra

ct methods get_radius

Mixing static, class and
abstract methods

When building classes and inheritances, the time will come where
you will have to mix all these methods decorators. So here's
some tips about it.

Keep in mind that declaring a class as being abstract, doesn't
freeze the prototype of that method. That means that it must be
implemented, but i can be implemented with any argument list.

import abc

class BasePizza(object):
_ _metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg

This is valid, since Calzone fulfil the interface requirement we
defined for BasePizza objects. That means that we could also
implement it as being a class or a static method, for example:

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ...

7von9

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""

class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None

This is also correct and fulfil the contract we have with our
abstract BasePizza class. The fact that the get_ingredients method
don't need to know about the object to return result is an
implementation detail, not a criteria to have our contract fulfilled.

Therefore, you can't force an implementation of your abstract
method to be a regular, class or static method, and arguably you
shouldn't. Starting with Python 3 (this won't work as you would
expect in Python 2, see issue5867 (http://bugs.python.org
/issue5867)), it's now possible to use the @staticmethod and
@classmethod decorators on top of @abstractmethod:.

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

ingredient = ['cheese']

@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list.

return cls.ingredients

Don't misread this: if you think this going to force your subclasses
to implement get_ingredients as a class method, you are wrong.
This simply implies that your implementation of get_ingredients in
the BasePizza class is a class method.

An implementation in an abstract method? Yes! In Python,
contrary to methods in Java interfaces, you can have code in your
abstract methods and call it via super):

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ...

8 von9

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

default_ingredients = ['cheese']

@classmethod

@abc.abstractmethod

def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients

class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()

In such a case, every pizza you will build by inheriting from
BasePizza will have to override the get_ingredients method, but will
be able to use the default mechanism to get the ingredient list by
using super().

The Hacker's Guide to Python (/books/the-hacker-
guide-to-python)

A book I'm writing that will be launched soon, talking
about designing Python applications, state of the art, and
various Python tips.

If you want to be the first to hear about the launch,
subscribe now.

D] Keep me updated

JULIEN DANJOU

PYTHON

On

http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

22.03.2014 13:49

The definitive guide on how to use static, class or abstract methods in ... http://julien.danjou.info/blog/2013/guide-python-static-class-abstract-...

(/books/the-hacker-guide-to-python)

Enjoyed this article?

Share it:

Tweet < 27 241 <127 Share[j 1

Recommend Receive next articles by email:

D\ Subscribe

4= Previous post: Next post: Announcing The
OpenStack Ceilometer Hacker's Guide to Python =»
Havana-2 milestone (/blog/2013/announcing-
released (/blog the-hacker-guide-
/2013/openstack- to-python)

ceilometer-havana-
2-milestone-released)

Created by Julien Danjou (http://julien.danjou.info) using Hyde (https://github.com/hyde/hyde). Sources (http://git.naquadah.org/?p=~jd
/julien.danjou.info.git;a=summary).
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-sa
/3.0/deed.en_US).

@ (http://creativecommons.org/licenses/by-sa/3.0/deed.en_US)

9von 9 22.03.2014 13:49

