

Orbitmessung und Orbitkorrektur an DELTA Erste konzeptionelle Überlegungen für das FOFB der FAIR-Ringe

von Gerrit Schünemann

G. Schünemann | 29.05.09

DELTA: Zahlen und Fakten

- Nutzerbetrieb ab 1999
- Linac: Linearbeschleuniger 60 MeV (v = 99% c)
- Booster: 6 s Zyklus, davon 4,1 s Rampe, 1,5GeV max.
- Speicherring: 115m Umfang
 8 Beam Lines in Benutzung f
 ür Synchrotronstrahlungsnutzer
 1..192 Elektronenbunche, ca. 1 cm Bunchlänge
- Magnete (Booster und Speicherring): 24 Dipole je ca. 1m Länge, 4,7 t, 1000 A 76 Quadrupole 20cm und 40cm Länge
- Vakuumkammer: Edelstahl 3mm Wandstärke

Überblick Vakuumkammer

- Edelstahl
- Schlüssellochprofil
- Aufgeteilt in
 - Pumpbereich
 - Strahlbereich ca. 70mmx40mm

Motivation Orbitmessung und Orbitkorrektur

- Lebensdauer des Elektronenstrahls soll möglichst hoch sein (10h +)
 - Gutes Vakuum
- Technische Probleme:
 - Thermische Belastung
 - Netzgerätedrifts
 - Verschiebung/Bewegung
 - Magneten
 - Kammer
 - Anregung des Elektronenstrahls durch Störungen
 - z.B. 50 Hz Netzspannung
- Wunsch der Nutzer:
 - Konstanter Elektronenstrahlorbit

G. Schünemann | 29.05.09

BPM Knopf Signal

• Signalverlängerung (30ps \rightarrow ns) durch Messung bei begrenzter Bandbreite

Bergoz BPM

- Analoge Schaltung:
- Multiplexed Input zur Vermeidung driftender Verstärker
 - Umschaltung mit $8kHz \rightarrow 2kHz$ Daten, Taktung auf 40kHz möglich (10kHz Daten)
- 2 Verstärkerstufen zur Signalhöhenanpassung
- Puffer zur Signalzwischenspeicherung
- Positionsberechnung und Ausgabe

I-Tech Libera Electron

- Vollständig digitale Datenverarbeitung
- Komplettsystem zur Orbitmessung und Strahlanalyse
- Turn by Turn Messung möglich
- FPGA-basiert
- Konfigurierbar
- Programmierbar
- Kostenintensiv

Elektronenstrahl

BPMs an DELTA BPM 15 BPM 14 BPM 4 BPM 7 BPM 1 ⊕ \oplus BPM 1 BPM 28 • I-Tech Libera Bergoz MX-BPM BPM 11 • Bergoz LR-BPM BPM 40 TO SHOL BPM 41

Grundlagen der Orbitkorrektur

- Regelkreis:
 - Orbitmessung
 - Erkennen von Abweichungen
 - Berechnen der nötigen Magnetfeldstärkenkorrektur
 - Zentrale Berechnung
 - Orbitinformationen werden Zentral gesammelt
 - Korrektur wird Zentral berechnet
 - Verteilte Berechnung
 - Orbitinformation werden verteilt
 - Korrekturberechnung lokal f
 ür einen Korrektor
 - Änderung der Magnetbestromung durch Netzteile

Orbitkorrektur an Delta

- Korrektor während der 4s Rampe in BoDo:
 - Orbitkorrektur bis ~80 Hz Bandbreite
- Korrektur in Delta:
 - Korrekturarten im normalen Betrieb
 - Globale langsame Orbitkorrektur (~0,1 Hz) (SOFB)
 - Im Experimentalbetrieb
 - Lokale schnelle Orbitkorrektur (1 Hz \rightarrow 1 kHz)(FOFB)

Langsame Orbitkorrektur bei Delta

- Einfacher Aufbau, Zentrale Korrekturberechnung
 - 0,1 Hz Korrekturgeschwindigkeit, limitiert durch Busgeschwindigkeit
 - Korrekturberechnung auf Standard-PCs

Schnelle lokale Orbitkorrektur

- Details der schnellen Messung und schnellen lokalen Orbitkorrektur
 - Messung und Korrektur einzeln erfolgreich getestet
 - Gesamttest folgt

DiamondCC

- Point to Point Datenaustausch
- Ermöglicht das Verteilen aller Positionsdaten an alle angeschlossenen Busteilnehmer
- Strukturgegebene Ausfallsicherheit
- Geringe Latenzzeit
- Vorgeschlagene Kommunikationsstruktur Diamond Light Source (Oxford, England):

[Q:I.S. Uzun et al., Initial Design of the fast orbit feedback system for diamond light source, ICALEPS 2005]

G. Schünemann | 29.05.09

Warum die Eigenentwicklung mit FPGA-Boards?

- Kein kommerzielles System zur schnellen Orbitkorrektur für Bergoz Elektroniken verfügbar
- I-Tech Libera Electron Lösung wäre zu kostenintensiv
- Möglichkeit der genaueren Orbitmessung für die langsame Orbitkorrektur
- Verfügbarkeit des DiamondCC als Kommunikationsinstanz
- Features:
 - Anschlussmöglichkeit von bis zu 4 Bergoz Elektroniken
 - Taktung von 40kHz pro Elektronik \rightarrow 10kHz Daten pro Elektronik
 - 4 fache Abtastung des Positionssignals zur Fehlerminimierung
 - Weitergehendes pre-processing möglich
 - Implementierung des DiamondCC d.h. Kommunikation mit I-Tech Liberas möglich

Schnelles Orbitfeedback

• Geplantes DELTA System (mit abstrahiertem DiamondCC)

G. Schünemann | 29.05.09

Konzeptüberlegungen für FAIR

- Zielsetzung:
 - Orbitkorrektur auf geramptem Speicherring
 - Korrektor von Orbitdrifts während des Rampvorgangs
 - Bestehende Korrekturmagnete, beschränkte Anzahl BPMs
- "nichts Neues" ABER:
- Änderung der Optik während der Rampe
- Unterschiedlichste Teilchensorten
- → Dynamisches Orbitkorrektursystem nötig
 - d.h. Zeitabhängig
 - Auftrennung Langsames/Schnelles Feedback?

Vorhandene Hardware

Libera Hadron BPMs:

I

		FPGA	
		Runch	Data concentrator software
nalogteil	ADC	Erkennung +Positions berechnung	DiamondCC

Vorhandene Hardware

Netzgerätekomplex

Hadronenstrahl

 Netzgeräte und Korrektoren
 RS485
 Magnetfeld stärke

Systemidee

Möglicher erster Aufbau

Strahl

Erste Fragen

- Wie groß ist:
 - Das maximal dz/dt?
 - → Der maximal nötige Ablenkwinkel/Ablenkfrequenz?
 - => Magnetstärke/Netzgerätestärke?
 - ...
 - Messungen sind notwendig!

- Erste Messprogramme:
 - Geophonmessungen
 - "Parasitäre" Strahlorbitmessung

Danksagung

- Diamond Light Source, Oxford, UK
- Norbert Koch, Elektronikentwicklung TU Dortmund
- Benjamin Heine, Jan Geldmacher, Fakultät Elektrotechnik, TU Dortmund
- Das DELTA Team