Project Meeting on Feedback @ DELTA, 28 Apr. 2009

Status of Beam Posiotion Monitors at SIS-18

Piotr Kowina for the GSI Beam Diagnostic Group

Outline

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Short introduction to SIS-18 Parameters
 - > BPM Requirements
- Former BPM readout

New realization:

- > Impedance matching
- Low imp. amplifiers
- Direct digitalization
- > Algorithm for position evaluation

DAQ

- > Data structure
- > Data flow, synchronization, triggering
- Tune measurements
- Closed orbit correctors
- Summary and outlook

FAIR – Basic Layout

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Status of Beam Position Monitors at SIS-18

Parameters of SIS-18 BPMs

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

SIS

- 12 BPM stations
- Measurements and display: closed orbit, Raw Data, Bunch by Bunch beam position, Tune, Calibration und Status control, Feedback
- Scaleable concept for future SIS100

Requirements:

- Bunch frequency (RF): 850 kHz 5 MHz (SIS100 = 6 MHz)
- Harmonic number: typically 4
- Position measurement accuracy: better than 0.1mm
- Bandwidth Pick-Up: 0.1 MHz to 200MHz
- Digitization: 125MS/s, 14Bit, 12 x Libera Hadron

Bunch To Bunch:

Maximal data rate: 96 Bit/Bunch x 6MHz x 12 Liberas = 864MB/s (max!)

Row data:

4 Electrodes x 125MS/s x 14Bit x = 875 MB/s pro station

BPM: (capacitive PU, diagonal – cut type)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Status of Beam Position Monitors at SIS-18

Former BPM readout (still in operation)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- bunch frequency: 0.8MHz 5MHz
- bunch length: 50ns 500ns
- high Z_0 amplifier mounted directly on pick-up.

GS]

Former BPM readout: position evaluation

• Advantage:

- Analog based solution
- No fast ADC needed (important issue in 1989)
- Noise reduction due to band limitation

Disadvantage:

No observation possible in the bunch-bybunch scale.

Future need: Long cables

Project Meeting on Feedback @ DELTA, 29 Apr. 2009 amplifier ADC and position evaluation -5m

High radiation -> long cables

> For amplifier with high Z_0 : Long cables = high capacity = reduced transfer impedance (signal amplitude).

$$|Z_t| = \frac{A}{\pi a} \frac{1}{\beta d C} \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$

GS]

Matching transformer

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Low thermal noise (allows for higher amplification).

Weak influence of the cable capacity on signal height.

RF amplifier – requirements

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Requirements for amplifier:
 - > 4 channels
 - Dynamic range from 1x10⁸ to 1x10¹³ charges per bunch i.e. 120dB dynamic range of signal amplitude
 - Common mode gain matching better than 0.1dB each PU-plate pair
 - Bandwidth 0.2MHz-200MHz
 - ≻ Z₀=50Ω
 - $> Z_{out} = 50\Omega$
 - > Common mode gain matching better than 0.1dB for each PU-plate pair

RF amplifier – realization

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Two 35dB amplifier stages.
- Steeples variable PIN-diode attenuator -5dB...-35dB.
- Individual amplification/attenuation adjustment for each channel and measurement range -> up to 64 ranges (6 bits)
- Used elements
 - > Amplifiers Minicircuits GALI-52 and GALI-4
 - > PIN-diodes Infineon PAR-61

Broad band position evaluation

Project Meeting on Feedback @ DELTA, 29 Apr. 2009 Z₀=50Ω $Z_{out} = 50\Omega$ $Z_p \sim 2k\Omega$ amplifier Υ ADC Computer and position pick up 6:1 in control evaluation room amplifier ~5m 4 channels, 14 bit, -40dB... +60dB 125 MSa/s, 256MB

memory

- Bunch frequency 0.8MHz 5MHz
- 4 Bunches per cycle
- Positions calculated:
 - bunch by bunch
 - closed orbit
 - > Q-measurement

Beam Position Processor (Libera Hadron)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Almost only ADC + FPGA

(no commercial position evaluation software)

Analog module Interface:

- 4 ADCs
- 125MSa/s
- 14 Bit pro channel

RAM:

- DDR2
- 128MB (256MB)

GSI

Broad band position evaluation

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

BPM Plate signals 1,5MHz -6dBm

- Issues needed for integration:
 - > gate (window) generation
 - > restoration of the base-line shift caused by AC coupling.

G S

Window generation and Base Line Restitution

Base Line Restoration (BLR)

Beam position: off-line results

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

G _ S -)

◆ windows generated with double threshold comparator,
⇒ no window dropout for more than 1.000.000 bunches

 Position accuracy 0.03 mm with averaged data over 1000 turns, whereas turn by turn data allows calculation of betatron oscillation.

Algorithm implementation in FPGA

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Xilinix – License at GSI:

Presently ISE 10.1 as Campus License

Upgrade for about 500 EUR every second year second license available

G S]

Additional timing information

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Information used for consistency check and bunch numbering
- Total among of data 96 Bit / bunch:
 - 2x22 bit for vertical horizontal position,
 - rest status bits, RF, gate start and stop
- Total data rate 580 MBit/s per BPM

G S]

Concentrator Server (or if you like: CCCP)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Concentrator and Control Computer CCCP

2x QuadCore CPUs, 2GHz 32GB RAM 146GB RAID 0, 10.000 U/s 160GB RAID 1, System

Piotr Kowina

Status of Beam Position Monitors at SIS-18

Fair Control System architecture (prototype)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Software

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Software

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

• 3 FESA Classes:

- > BPM
- > BPM Master (Concentrator)
- > AUX Libera (Transformer, RF etc.)

🐯 02:06:22 – Intercepted Communication Error: S03DX BPM::getIntensity, no data available.

Tune Measurement

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

G S 1

Tune measurement (off-line analysis)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Detecting the bunch position on a turn-by-turn basis the tune can be determined: Fourier transformation of position data

 \rightarrow tune within 2000 turns corresponding \approx 5 ms time resolution

On-line Tune measurement (not yet fully functional)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

GSI

Motivation for fast feed-back

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Closed orbit correction needed due to relative reduce aperture (SIS100)
- Precisely corrected orbit essential for precise tune measurement and correction.
- Presently only feed forward: 1 at injection, 2 at extraction.
- Tune measurement crucial for high intense beams!

Motivation for fast feed-back

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Closed orbit correction needed due to relative reduce aperture (SIS100)
- Precisely corrected orbit essential for precise tune measurement and correction.
- Presently only feed forward: 1 at injection, 2 at extraction.
- Tune measurement crucial for high intense beams!

Closed orbit feed-back: BPM vs. correctors (steerers)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- 12 BPMs
- 12 vertical steerers (one per period)
- 24 horizontal steerers integrated with dipoles.
 Only 12 can be used for closed orbit feed back (see table next page).
- Digital or analog control (see D. Schupp, APC specification)

Closed orbit feed-back: BPM vs. correctors (steerers)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- 12 BPMs
- 12 vertical steerers (one per period)
- 24 horizontal steerers integrated with dipoles.
 Only 12 can be used for closed orbit feed back (see table next page).
- Digital or analog control (see D. Schupp, APC specification)

period

Closed orbit correctors (steerers) table

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

- Not always the same steerer in the period lattice are available
- Some of them have presently only unipolar power supply.

Dipolmagnete	Korrekturmagnte	Netzgeräte Typ SVE								Polarität
										(NG)
		10A-SIS	40A	10B-SIS	250A	22 -SI	60A	10.1A-SIS	60A	05.04.2009
S01MU1	S01MU1A	S01MU	1A							1
S01MU2	kein Kabel									
S02MU1	S02MU1A							S02MU1	A	0
S02MU2	kein Kabel									
0.000 41.14	0.000 41 14 4	0.001.41								4
S03MU1	S03MU1A	S03MU	1A							1
S03MU2	kein Kabel									
0.041414	00404114.0			CO 41 4						
S04MU1	S04MU1A			504M	UIA			COANALIC		0
504102	S04IMUZA							50410102	A	0
SOEMU 1	SO5MU14A	SOEM!	1 ^							1
SOSMUT	SOSINUTA	3051010	IA	SOEM	124					- 1
305102	SUSIVIUZA			305101	UZA					
\$06MU1	S06MU14			\$06M	1 Δ					
S06MU2	S06MU2A	S06MU	24	000101						1
0000002	00011021		27 (
S07MU1	S07MU1A							S07MU1	А	0
S07MU2	S07MU2A			S07M	U2A					
S08MU1	S08MU1A							S08MU1	A	0
S08MU2	kein Kabel									
S09MU1	S09MU1A	S09MU	1A							1
S09MU2	kein Kabel									
S10MU1	S10MU1A					S10M	U1A			0
S10MU2	S10MU2A			S10M	U2A					
S11MU1	S11MU1A					S11M	U1A			0
S11MU2	S11MU2A			S11M	U2A					

H. Ramakers, GSI EET Dept.

G S

Triplet vs. duplet focusing (challenge).

Status of Beam Position Monitors at SIS-18

Theory sources ;)

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Linear optics study: ORM Closed orbit correction High order linear optics: chromaticity A. Parfenova, C. Omet, et al.

A. Parfenova, C. Omet et al.

A. Parfenova, S. Paret, S. Appel, W. Daqa

Study of linear coupling Studies on the 3rd order resonance Reconstruction of Nonlinear components

W. Daqa

S. Sorge

A. Parfenova

High intensity effects on resonances Study on collective effects

O. Boine-Frankenheim G. Franchetti, V. Kornilov

SIS18 closed orbit correction using a local bump method A. Parfenova, G. Franchetti, B. Franczak, M. Kirk, C. Omet GSI-Acc-Note-2006-11-001 Orbit response matrix method applied to SIS18 for lattice optimization A. Parfenova, G. Franchetti, C. Omet, S.Y. Lee ACC_RD_note-2007-001

BPMs vs. Steerers calibration

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

GSI

Summary and outlook

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Position mesurement:

- Commissioning of FESA based system (April 2009)
- System test and eventual optimization in operation
- Test for data consistency and system stability
- Installation High Precision Clock (EE)

Hardware/software upgrade of BPM system:

- Upgrade of 50 Ohm preamplifier
- Test generator for each BPM station
- Timing conceptual design based on RT Actions.
- 64 Bit Version FESA und Timing.

Calibration of BPMs and Steerers (beam based)

Feed back for closed orbit and ...

- Conceptual design of algorithm
- Communication with correctors and data basis
- Concept for the corrections transition for triplet/duplet optics
- Coexistence with feed forward, local bumps (time constants etc)
- Scaleable system topology

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

Thank you for your attention!

Piotr Kowina

Status of Beam Position Monitors at SIS-18

Advantages and challenges of the method

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

It works even for strong deformed bunches.

Cooled beam - ramp beginning

But it has problem when bunch length > bunch distance.

GS1

Digital Random Noise Generator

Project Meeting on Feedback @ DELTA, 29 Apr. 2009

1 MHz carrier frequency Number of harmonics : 1 q is set to 0.3 with a dq of 0.01

Frequency sweep (pseudo-RF as input) Number of harmonics : 4 q is set to 0.3 with a dq of 0.03

Amplitude and width of excitation can be modified also remote controlled

G 5]