Aktuelles zum BIF-Monitor

BIF-Monitor – Current Research

3,75 MeV/u Ø 4 mm 100 nA S⁷⁺ beam in 600 mbar Krypton

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

- Motivation Beam Profile Measurement
 - Benefit of non-intercepting profile measurement
- Introduction of the BIF-monitor
 - General idea, functionality and components
- Results of Research
 - Estimation of the photon yield
 - Variation of gas-pressure and particle-energy
 - Radiation induced background & shielding concept
 - Investigation of alternative working gases
- Technical Improvements
 - Visit at TANDEM-acellerator TU-Munich

Conclusion

Conventional Wire-Based Systems

Secondary Electron Monitor (SEM)-Grid of 48 Tungsten wires Ø 100 μm in x-y-plane with 1 mm wire-spacing.

- Secondary Electron Monitor Grid
 - Sufficient signal strength
 - Limited spacial resolution (wire-spacing)
- Impact on the beam
 - Energy-loss in the wire, scattering (x´) momentum distr. (Δp/p), stripping...
 - Emittance "blow-up", beam-loss!
- Impact on the monitor
 - Heating the wires → melting!

Non-intercepting beam diagnostics is mandatory!

Gas-Based Detectors

- For $p \ge 10^{-8}$ mbar residual gas N₂-dominated, UHV \rightarrow H₂
- Atomic collisions driven by electronic stopping -dE/dx
- Excitation, ionization and fluorescence were observed

Ionization Profile Monitor

[T. Giacomini et al. (2009)]

- Gas-ions accelerated in homogeneous E-field vs. spatially resolving sensor
- 10 kV accelerating HV \rightarrow E = 55 kV/m
- Time of flight ~ 100 ns
- 4π -acceptance \rightarrow all ions
- MCP-amplification ~10⁶

Sensitive profile monitor suitable for synchrotrons

Beam Induced Fluorescence

How a Beam Profile is Obtained

How a Beam Profile is Obtained

BIF- and **SEM**-profiles in accordance with each other, $\Delta\sigma/\sigma \leq 10\%$

Benefit of the BIF-monitor

25 cm

ÖTP

- Short insertion-length
- No mechanical parts inside the vacuum
- Magnification ratio can be adapted choosing f
- V-stack image intesifier single photon counting
- Digital 12-bit VGA-cam with FireWire-interface

Benefit of the BIF-monitor

- Short insertion-length
- No mechanical parts inside the vacuum
- Magnification ratio can be adapted choosing f
- V-stack image intesifier single photon counting
- Digital 12-bit VGA-cam with FireWire-interface

Components of the shelf

Detection Principle

GSI

Non-intercepting Profile Monitors @ **G S**

X2 experimental area (UNILAC) addressing beam energies (3,5 – 12 AMeV) and HTP Experimental area (SIS) with energies (50 – 750 AMeV).

NDCX injector Berkeley (7,5 AkeV)

22/04/2010 | GSI Beam Diagnostics | Group Seminar | Frank Becker

 IPM's at SIS-18 and currently setup for ESR

- BIF-monitors along the UNILAC at 7 locations
- FAIR requires 2 IPM's and 14 additional BIF-stations
- 3 experimental areas for different beam energies
 7,5 AkeV – 750 AMeV

Non-intercepting profile diagnostics is mandatory!

BIF Setup at GSI-UNILAC

ICCD-Cameras in vertical and horizontal plane to detect x- and y- beam profiles

C. Andre, C. Dorn]

22/04/2010 | GSI Beam Diagnostics | Group Seminar | Frank Becker

BEAM

Outline

- Motivation Beam Profile Measurement
 - Benefit of non-intercepting profile measurement
- Introduction of the BIF-monitor
 General idea, functionality and components

Results of Research

- Estimation of the photon yield
- Variation of gas-pressure and particle-energy
- Radiation induced background & shielding concept
- Investigation of alternative working gases
- Technical Improvements
 - Visit at TANDEM-acellerator TU-Munich

Conclusion

Expected Photon Yield

Pressure-Variation by 6 OM

Amplitude ~ p and σ = constant \rightarrow p is a free parameter

Pressure-Variation by 6 OM

Energy-Variation from 50 to 750 AMeV

- Integral signal-amplitude scales according to Bethe-Bloch formula
- Consistent results for Tantalum and Krypton ions, when normalized with respect to m and q of ²³⁸U⁷³⁺

Energy-Variation from 50 to 750 AMeV

- Integral signal-amplitude scales according to Bethe-Bloch formula
- Consistent results for Tantalum and Krypton ions, when normalized with respect to m and q of ²³⁸U⁷³⁺

For increasing ion energy \rightarrow Background increases and signal decreases!

Simulation of the Neutron Flux

- HTP-caves topview with walls (grey), beamline (red) and 1 m³ concrete shielding
- ICCD-camera (yellow) is placed in the center of the block ~50 cm wall-thickness
- FLUKA-simulation n-flux for 900 AMeV ⁴⁰Ar¹⁸⁺ ions [A. Plotnikov (2009)]
- n-flux suppressed by 94 % and γ-flux by 96%!

How can fluorescence images be transported into the shielded volume?

Shielding-Concept with Image-Guide $\mathbf{I} = \mathbf{I}$

- Fiberoptic image guide with ~10⁶ sorted optical fibers and (15mm)² transported active image area
- 65 % total optical losses (coupl. & transm.) 1,3 m length

Shielding-Concept with Image-Guide $\mathbf{G} = \mathbf{G} \mathbf{I}$

- Fiberoptic image guide with ~10⁶ sorted optical fibers and (15mm)² transported active image area
- 65 % total optical losses (coupl. & transm.) 1,3 m length

Image guide and ICCD-camera resoulution have been matched \rightarrow Imaging properties preserved, comparison profiles agree well

Systematic Errors – Alternative Gases

- BIF-profiles represent x₁ the location of photon-emission
- Gas-dynamics and lifetime of excited fluoresecence states influence profile errors
- Gas-dynamics defined by:
 - Temperature
 - Dissociation-kinetics
 - For ions E-field of the beam
 - Mass, charge...

Searching for alternative gases with larger mass and shorter optical lifetimes with respect to $N_2 \rightarrow$ Spectroscopy!

Imaging Spectrograph with ICCD

- Technique allows to record fluorescence-images with spectral and spatial information → spectra & beam-profiles
- Chromatically corrected quartz-optics \rightarrow 300 800 nm

Intensity & spectral position of transitions \rightarrow profile-width

And How it Looks Like in Reality...

Results - Spectroscopy

S⁶⁺ Ions @ 5 AMeV in 10^{-3} mbar gas:

- Efficiency → S-20 cathode (blue)
- All investigated gases show fluorescence-transitions in the visible range → blue-dominated
- Light gases N₂/He show less lines than heavy species → Possibility of monochromatic profile analysis!
- He shows neutral lines (He-I) in sensitive spectral range, all other gases show ionic lines (X-II)

Results Profile Analysis

- Transition-selective profile-projections of all nitrogen lines N₂⁺ und N⁺ with similar shapes
- Beam-profiles by He-I transitions variably broadened, lifetimeindependent
- Integral profiles of heavy rare gases and N₂ agree very well
- He profile ist broadened and of different shape

Which Gas Works Best?

- Profiles in all rare gases but Helium agree with profiles in N₂
- Thermal drift $d_{thermal}$ for heavy gases (A_{Kr} =84, A_{Xe} =131, τ <10ns) vs. N₂ (2 A_N =28, τ =60ns) \rightarrow drops like 1 µm vs. 30 µm
- Rare gases occur as atoms → no dissociation-dynamics
- Chart compares light intensities \mathbf{I}_{mess} and $\mathbf{I}_{eff} = I_{mess}/Z_{gas}$ normalized with respect to $-dE/dx \sim Z_{gas}$:

Gas	N ₂	He	Ar	Kr	Xe
\mathbf{I}_{mess}	258	9	98	163	222
\mathbf{I}_{eff}	100	26	30	25	22

For most applications N_2 is the best compromise, due to its four times higher fluorescence-efficiency

Outline

- Motivation Beam Profile Measurement
 - Benefit of non-intercepting profile measurement
- Introduction of the BIF-monitor
 General idea, functionality and components
- Results of Research
 - Estimation of the photon yield
 - Variation of gas-pressure and particle-energy
 - Radiation induced background & shielding concept
 - Investigation of alternative working gases

Technical Improvements

Visit at TANDEM-acellerator TU-Munich

Conclusion

Reliability of Intensified Cameras

- Radiation-induced Background
- Aging of cathode, MCP and phosphor
- Radiation damage of CCD's (hot-pixel)

Modular design for easy replacement is mandatory

Radiation-hard components required

Testing Alternative Intensified Cameras

- EMCCD-Cameras integrate all sensitive components on 1 chip!
- In-vaccum design for easy sensor replacement

Replacing the sensor -> installing a new ICCD system

Can the Monitor be Simplified?

Advantages of Pulsed Gas Valves

- Minimal pulse duration typical 0.1 - 20 ms
- Leak rates can be increased to match short pulse durations
- Mean gas load is reduced while peak gas pressure is increased!

High Pressure -> easy Diagnostics :-) $\mathbf{G} = \mathbf{I}$

Our Visit at TANDEM-Munich

Professor Andreas Ulrich – Atomic Phyisics TUM

The TANDEM-Principle

Vacuum-UV Spectrometer at TANDEM

Decreasing Kr-Press. 1000 – 1mbar

$3,75 \text{ MeV/u} \varnothing 4 \text{ mm} 100 \text{ nA} \text{ S}^{7+}$ beam in 1000 - 1 mbar Krypton

Conclusion

- Non-intercepting profile measurement is important for:
 - Beam transport & to characterize intensive ion beams
 - Best focusing upon experimental targets (WDM, FRS, ...)
- Successful application of the BIF-monitor was shown:
 - In the energy-range of 7,5 AkeV 750 AMeV

Results of research:

- ${\sc signal-amplitude} \to {\sc linear}$ with p, dE/dx with E \to f = const.
- ${\sc {\bf P}}$ Profile-width \rightarrow does not depend on p \rightarrow p free parameter
- ${\sc {\bf P}}$ Radiation-background $\rightarrow {\sc {\bf P}}^2 \rightarrow$ Shielding is mandatory
- Rare gases (Kr, Xe) can replace $N_2 \rightarrow$ reduced profile-errors
- N₂ has highest fluorescence-efficiency per energy-loss
- Outlook Technical improvement
 - Construction of a shielded BIF-monitor with an image-guide
 - Reliable design and rad-hard components for int. cameras
 - Pulsed piezo-driven gas-valves for lower average gas load
 - Further investigation of the high pressure regime > 1 mbar

Thank's to...

C.Andre ¹⁾, P. Forck ¹⁾, T. Giacomini ¹⁾, R. Haseitl ¹⁾, A. Hug ¹⁾, T. Milosic ¹⁾, H. Reeg ¹⁾, B. Walasek-Hoehne ¹⁾, F.M. Bieniosek ²⁾, P.A. Ni ²⁾, A. Ulrich ³⁾, D.H.H. Hoffmann ⁴⁾

1) GSI, Helmholtzzentrum für Schwerionenforschung GmbH

- 2) LBNL, Berkeley, California
- 3) Department E-13, Technische Universität München
- 4) Institut für Kernphysik, Technische Universität Darmstadt

Thank you for your attention :-)