#### **Atomic Physics @ GSI (and FAIR)**

All you (n)ever wanted to know about atomic physics with heavy ions

Harald Bräuning

SD / AP



### **Atomic Physics**



## AP @ GSI



Harald Bräuning

AP @ GSI

# **Highly Charged Heavy Ions**

Hydrogen

simplest atomic system

best studied atomic system

energy difference between the 1s and 2s measured with **10**<sup>-14</sup> precision by Laser spectroscopy

Heavy lons

extremely strong electric fields relativistic effects become significant QED effect increase with Z<sup>4</sup> QED becomes more difficult to calculate simple few electron systems



# **Quantum Electro-Dynamics**

'...my physics students don't understand it either. That is because I do not understand it. Nobody does.'

'The theory ... describes Nature as absurd from the point of view of common sense. ... So I hope you can accept Nature as She is – absurd.'

Richard P. Feynman: QED - The Strange Theory of Light and Matter



# **Quantum Electro-Dynamics**

#### n=2 energy levels in hydrogen



QED contribution scales with Z<sup>4</sup>/n<sup>3</sup>

#### Higher Order QED Contributions



## **Measurements at the Electron Cooler**



## **Measurements at the Electron Cooler**

#### Gumberidze et al.: Phys. Rev. Lett. 94 (2005) 223001

| From the $Ly \alpha_1$                                                             | From the K-RR                                                                 | Mean value                             | Finite nuclear size   | 198.81           |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|-----------------------|------------------|
| $460.9\pm2.5$                                                                      | $454.9\pm5.4$                                                                 | $459.8\pm2.3$                          | Nuclear Recoil        | 0.46             |
| The final result for                                                               | 450 0 1 4 0                                                                   |                                        | Nuclear Polarization  | -0.19            |
| the 1s Lamb shift                                                                  | $459.8 \pm 4.2$                                                               |                                        | VP (see Fig 2.1)      | -88.60           |
| 520<br>510<br>490<br>490<br>490<br>400<br>450<br>440<br>430<br>420<br>1990<br>1992 |                                                                               |                                        | SE (see Fig 2.1)      | 355.05           |
|                                                                                    | scelerated Cooler                                                             | Decelerated lons:<br>Cooler (our exp.) | SESE (see Fig $2.2$ ) | -1.87            |
|                                                                                    |                                                                               |                                        | VPVP (see Fig 2.2)    | -0.97            |
|                                                                                    |                                                                               |                                        | SEVP (see Fig $2.2$ ) | 1.14             |
|                                                                                    |                                                                               |                                        | S(VP)E (see Fig 2.2)  | 0.13             |
|                                                                                    |                                                                               |                                        | Total Lamb shift      | $463.95 \pm 0.5$ |
|                                                                                    |                                                                               |                                        | Experiment            | $459.8 \pm 4.2$  |
|                                                                                    | 9941996199820002002YearExperiment not sensitive to hig<br>order contributions |                                        | tive to higher        |                  |







#### Comparison: Ge(i) detector - crystal-spectrometer

Ge(i) pulse height  $\epsilon = 10^{-4}$ 

crystal spectrometer  $\epsilon = 10^{-8}$ 







Harald Bräuning

AP @ GSI



#### 1. Beamtime with a 2d $\mu$ -strip detector: March 2006

H. Beyer, R. Reuschl, et al.

raw x-ray image

x-ray image in coincidence with down-charged ion (electron capture)

B x-ray image (10 keV to 100 keV) x-ray image 0 keV to 100 keV) + time condition x-ray image (55 keV to 65 keV) M + time condition × [mm] ray image to 100 ke x-ray image (10 keV to 100 keV) + time condition x-ray image (55 keV to 65 keV) + time condition E × (mm) W x-ray image keV to 100 keV) (mm) x-ray image 10 keV to 100 keV) + time condition E x-ray image (55 keV to 65 keV) + time condition m 10 × (mm)

x-ray in image in coincidence with down-charged ion and with preselected x-ray energies (58-65 keV)



1. Beamtime with a 2d  $\mu\text{-strip}$  detector: March 2006

H. Beyer, R. Reuschl, et al.





Problems:

resolution determined by width of detector strips detectors with smaller strips not realistic

**Current Development:** 

sub-pixel resolution via pulse shape analysis



E = hv

Photoabsorption

Periodic Potential







photon energy  $\rightarrow$  excitation energy

 $E = hv = h\frac{v}{d}$ 

(non relativistic)

kinetic energy  $\rightarrow$  excitation energy



planar channeling

$$E_{trans} = \frac{h v \gamma}{a} \left( \sqrt{2} k \cos \theta + l \sin \theta \right)$$

a: lattice constant; k,l,m: Miller-Indices

Tunable source of virtual photons:

coarse tuning: beam energy

fine tuning: crystal orientation



Condition for 1s - 2p Transitions

Resonance Energy of 1s-2p in Si[110]





#### 5 axis goniometer



 $0.4 \ \mu rad$  angular resolution

#### Made in Japan

AP @ GSI



Made in Germany

GSI



**Beam Diagnostics** 



detection of the  $2p \rightarrow 2s$  transition

**Observation angles:**  $\pm 43.4 \text{ deg and } \pm 32.8 \text{ deg}$ 

 $\mathbf{E}_{lab}$  = 6.97 KeV and 6.25 keV for the 4.4 6 keV Uranium transition



Detected x-rays as function of crystal orientation

#### **Tokyo University & RIKEN**

Y. Takano Y. Nakano Y. Kanai R. Yoshida T. Azuma <u>Y. Yamazaki</u> T. Ikeda

IPN Lyon D. Dauvergne

#### GSI

H. BraeuningA. Braeuning-DemianD. RacanoA, Bardonner

**Tomsk University** K. Klimova Y. Pivovarov





# **Radiative Electron Capture**



#### Photoionization



H. Stobbe, Ann. Phys. 7 (1931) 661

# **Radiative Electron Capture**

REC

#### Photoionization



GSI

# **Radiative Electron Capture**



Relativistic effects decrease the linear polarization

For high energies a "cross-over" effect can be observed Ann. Phys. 9 (1931) 21

A.Surzhykov et al., Phys. Lett. A 289 (2001) 213; J. Eichler et al., Phys. Rev. A 65 (2002) 052716

AP @ GSI

### **ESR Internal Target Section**



## **Compton - Polarimetry**

#### **Compton - Scattering**

Linearly Polarized Radiation



### **Compton - Polarimetry**



## **Micro – Strip Detectors**

#### New micro-strip semiconductor detectors

Si(Li) or Ge(i) energy resolution timing 2D (3D) position sensitivity multi-hit capability

single crystal for Compton scattering and absorption



#### **Micro – Strip Detectors**

#### 2D position sensitive Si(Li) detector

64 x 64 mm<sup>2</sup> active area: crystal thickness: 7 mm number of strips: 32 + 32 pitch: 2mm



active area:  $64 \times 64 \text{ mm}^2$ crystal thickness: 11 mm number of strips: 48 + 128 1167µm and 250µm pitch:



D+-

contact



GSĬ

germanium detector



64

mm

## **Compton - Polarimetry**

Images of Compton scattering distributions for well defined scattering angles

 $\mathsf{Energy} \leftrightarrow \mathsf{Angle}$ 

$$E' = \frac{E}{1 + \frac{E}{m_e c^2} (1 - \cos \theta_c)}$$

Test of the Polarization Sensitivity at the ESRF Synchrotron Facility using 100% Linearly Polarized Radiation



Results of a test beamtime at the ESRF with 98% linearly polarized x-rays

Harald Bräuning

AP @ GSI

# **Experimental Set-Up**



Harald Bräuning

AP @ GSI

# 96.6 MeV/u U<sup>92+</sup> + H<sub>2</sub>

X-ray spectrum after electron capture



# 96.6 MeV/u U<sup>92+</sup> + H<sub>2</sub>





## 96.6 MeV/u U<sup>92+</sup> + H<sub>2</sub>

**K-REC** 



Doktorarbeit: S. Hess

# **Future Applications in Beam Diagnostics**

REC as a 'probe' for measuring the ion spin-polarization Surzhykov et al., PRL 94 (2005) 203202

spin-polarized, heavy ions (Z > 54)

parity non conservation studies permanent electric dipole momont spin effects in collisions





. . .

# **Future Applications in Beam Diagnostics**

REC as a 'probe' for measuring the ion spin-polarization Surzhykov et al.,



Harald Bräuning

AP @ GSI

# **Future Applications in Beam Diagnostics**

REC as a 'probe' for measuring the ion spin-polarization Surzhykov et al., PRL 94 (2005) 203202

Stokes parameter  $P_1$  is polarization independent

Stokes parameter P<sub>2</sub> is strongly dependent on degree of polarization

spin polarization leads to a rotation of the polarization plane



unpolarized ion beam:  $P_2 = 0$ 

polarized ion beam:  $P_2 \neq 0$ 

$$\tan 2\Psi = \frac{P_2}{P_1}$$

A. Surzhykov et al., PRL 94 (2005) 203202

#### **The Crew**

rov, R. Reuschl, D. Protic, U. Spillmann, Th. Stöhlker, M. Trassinelli, S. Trotsenko, G. Webe

#### Theory

J. Eichler, S. Fritzsche, A. Ichihara, A. Surzhykov

Theoretische Physik, HMI-Berlin, Germany JAERI, Japan University of Heidelberg, Germany

... and many more







