User Tools

Site Tools


ds:projects:unimon:gateware

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
ds:projects:unimon:gateware [2021/07/20 22:03]
rgeissler
ds:projects:unimon:gateware [2023/02/09 10:10] (current)
rgeissler
Line 1: Line 1:
-====== Cryring BPM Gateware Documentation ======+====== UniMon Gateware Documentation ======
  
-This documentation was automatically generated from Latex. +This documentation was automatically generated from the Markdown file ''%%README.md%%'' in the Git repository https://git.gsi.de/BEA_HDL/UniMon_Gateware\\ 
-Any changes should be applied to the Latex sources in the Git repository https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware\\ +Any changes should be applied to the Markdown file, which can be converted to DokuWiki format using the script ''%%FPGA_Common/doc/scripts/create_dokuwiki.py%%''.
-The Latex sources can be converted to the DokuWiki format using the script ''%%doc/scripts/create_dokuwiki.py%%'' (see [[#953_dokuwiki|chapter 9.5.3]]).+
  
-The documentation is also available as a PDF: {{:ds:projects:cryring:bpm:gateware:documentation:Cryring_BPM_Gateware_Documentation.pdf|Cryring_BPM_Gateware_Documentation.pdf}}+The documentation is also available as a PDF: {{:ds:projects:unimon:gateware:UniMon_Gateware_Documentation.pdf|UniMon_Gateware_Documentation.pdf}}
  
-===== Resources =====+An up to date PDF version can be downloaded from the CI/CD section: https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/pipelines.
  
-All of the code of this project, the helper scripts and also the source of this documentation are under version control in a Git repository whose upstream is: https://git.gsi.de/BEA_HDL/Cryring_BPM_Gateware. The relevant branch is //master//.+Documentation that is common to multiple FPGA based projects can be found here[[:ds:projects:fpga:common|FPGA Common Documentation]]. 
 +It is also available as a PDF: {{:ds:projects:fpga:common:FPGA_Common_Documentation.pdf|FPGA_Common_Documentation.pdf}}
  
-Additional datasheets and papers are included as a Git submodule of the main Git repository. The upstream of the submodule is: https://git.gsi.de/BEA_HDL/datasheets and the relevant branch is //master//.+===== Resources =====
  
-Installation scripts to set up a Gitlab runner for continuous integration including all necessary software to build the gateware can be found in a Git repository whose upstream is: https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7. The relevant branch is //master//.+The code of this project and also the source of this documentation are under version control in a Git repository whose upstream is:\\ 
 +https://git.gsi.de/BEA_HDL/UniMon_Gateware.\\ 
 +The relevant branch is //master//.
  
-====== 1 Introduction ======+Common code is included as a Git submodule of the main Git repository. The upstream of the submodule is:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common.\\ 
 +The relevant branch is //master//.
  
-This document describes the gateware (= FPGA firmware) implementation of the Beam Position Monitor (BPM) for the Cryring accelerator at GSI. The term Trajectory Measurement System (TMS) is also common for this system and is used as a synonym for BPM. The BPM measures the horizontal and vertical beam positions at nine places of the accelerator ring, resulting in 18 location results.+Installation scripts to set up a Gitlab runner for continuous integration including all necessary software to build the gateware can be found in a Git repository whose upstream is:\\ 
 +https://git.gsi.de/BEA_HDL/Gitlab_Runner_Setup_Centos_7.\\ 
 +The relevant branch is //master//.
  
-There had been a previous implementation by Piotr Miedzik, but since no documentation could be found besides a conference paper [[#15_references|[2]]], it was decided to reimplement the gateware.+===== 1 Introduction =====
  
-===== 1.1 Measurement principle =====+This document describes the gateware (FPGA firmware) implementation of the UniMon Tank Signal Monitor.
  
-At each of the 18 measurement spots two capacitor plates are used to detect the electrostatic induction of the passing by charged particle bunches.+The system uses 4 IOxOS ADC_3117 FMC cards which are mounted on two OpenHardware AFC v4.0 FMC carriers. Each of the FMCs provides 20 ADCs with a resolution of 16 bits. The sampling rate of the ADCs is adjustable between 1 kHz and 5 MHz. Each ADC input is individually configurable as a differential or single ended and different gain settings are available.
  
-{{:ds:projects:cryring:bpm:gateware:documentation:BPM_mechanical_drawing.jpg| Mechanical drawing of a single BPM. The two segments of the slotted tube are the capacitor plates. The box on the top is the amplifier. Image origin: [[#15_references|[3]]]}}+{{:ds:projects:unimon:gateware:UniMon_crate.jpg}}
  
-**Figure 1.1:** Mechanical drawing of a single BPM. The two segments of the slotted tube are the capacitor plates. The box on the top is the amplifier. Image origin: [[#15_references|[3]]]+**Figure 1.1:** UniMon crate in the HKR
  
-The 36 voltages of the capacitor plates are amplified and led via coaxial cables to a single evaluation point where the analog to digital conversion and the digital processing takes place.+The gateware of each AFC stores the data stream of respectively 40 ADCs to a ring buffer, from which it can be read via PCIe.
  
-{{:ds:projects:cryring:bpm:gateware:documentation:Cryring_BPM_System_overview.png| Cryring BPM system overview. This document only describes the implementation of the block labeled //125 MSa/s ADC DAQ System (36 ch.)//, excluding the software part. Image origin: [[#15_references|[3]]]}}+===== 2 Common FPGA based projects documentation =====
  
-**Figure 1.2:** Cryring BPM system overview. This document only describes the implementation of the block labeled //125 MSa/s ADC DAQ System (36 ch.)//, excluding the software part. Image origin[[#15_references|[3]]]+This project incorporates the code from the //FPGA_Common// Git repository which is used in multiple projectsThe documentation of the common features can be found here:
  
-The positions of the particle beam are calculated respectively from the voltage difference of two related capacitor plates using the algorithm described in [[#2_bpm_algorithm|chapter 2]].+==== 2.1 Common monitoring and control features ====
  
-===== 1.2 Processing hardware =====+Documentation about the register bank, the architecture information storage and the observer can be found here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features
  
-Each of the 36 voltages coming from the amplifiers at the capacitor plates is sampled by a Renesas ISLA216P ADC at a sampling rate of 125 MHz with a resolution of 16 bitsRespectively four of the ADCs are placed on a single FMC board. Respectively two (ore only one for the last one) of the FMC boards are mounted on an AFC carrier board which is equipped with a Xilinx Artix XC7A200T FPGA for data processing [[#15_references|[4]]].+==== 2.FPGA Observer ====
  
-{{:ds:projects:cryring:bpm:gateware:documentation:AFC_board.jpg| An AFC carrier board with two mounted ADC FMC boards. The FPGA is located under the blue heat spreader.}}+There is a expert GUI that can be used together with multiple projects:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#3-fpga-observer
  
-**Figure 1.3:** An AFC carrier board with two mounted ADC FMC boards. The FPGA is located under the blue heat spreader.+==== 2.3 Build flow and simulation ====
  
-The FPGA is a mid-range device providing the following resources [[#15_references|[5]]]:+You can find instructions on how to build and simulate the gateware here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#4-build-flow-and-simulation
  
-  * Logic cells: 215,360 +==== 2.4 Helper scripts ====
-  * Block RAMs: 365 x 36 Kibits +
-  * Multipliers/Adders: 740+
  
-The whole system uses five AFC carrier boards which are mounted in a MicroTCA crate together with a timing receiver and a CPU unit for post processingEach of the five FPGAs is responsible for the processing of up to eight ADC data streams. The communication between the CPU unit and the FPGAs takes place via PCI Express over the so called backplane of the MicroTCA crate.+You can find usefull scripts here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#5-helper-scripts
  
-{{:ds:projects:cryring:bpm:gateware:documentation:MicroTCA_crate.jpg| MicroTCA crate with from left to right: power supply, MCH, CPU unit, timing receiver, AFC boards with 9 mounted FMC ADC boards, second MCH}}+==== 2.5 Continuous integration environment ====
  
-**Figure 1.4:** MicroTCA crate with from left to rightpower supply, MCH, CPU unit, timing receiver, 5 AFC boards with 9 mounted FMC ADC boards, second MCH+Information about the continuous integration setup can be found here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#6-continuous-integration-environment
  
-This document describes the gatewares of the FPGAs on the five AFC carrier boards. The gatewares are identical independent of the number of mounted FMC boards.+==== 2.6 Programming and hardware configuration ====
  
-====== 2 BPM algorithm ======+You can find instructions on how to program the FPGA and configure other hardware here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#7-programming-and-hardware-configuration
  
-The beam position is calculated from the measurement of the voltages of two corresponding plates:+===== 3 Peripheral devices =====
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_6aa1d98f.png?nolink&0x25}}+The gateware communicates with the following devices on each of the IOxOS ADC_3117 FMC cards:
  
-with+  * 10 * Analog Devices LTC2323-16 dual ADC 
 +  * 10 * EXAR XRA1405 GPIO expander
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_bda96d72.png?nolink&0x21}}+==== 3.1 Analog Devices LTC2323-16 ADC ====
  
-and+Each LTC2323-16 consists of two ADCs that are sampled in parallel.
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_590b21ff.png?nolink&0x21}}+The sampling frequency is adjustable in the range between 1 kHz and 5 MHz.
  
-where {{:ds:projects:cryring:bpm:gateware:documentation:/math_397916aa.png?nolink&0x13}} is a proportionality factor influenced by the dimension of the measurement system, {{:ds:projects:cryring:bpm:gateware:documentation:/math_86f7e437.png?nolink&0x13}} some possible voltage offset and {{:ds:projects:cryring:bpm:gateware:documentation:/math_11f6ad8e.png?nolink&0x13}} the beam position.+Each ADC provides a differential input pair and is directly controlled by the FPGA without any external clock.
  
-===== 2.1 Capacitance correction =====+The FPGA has to read the samples at a clock speed of 105 MHzThe sampling rate of the ADCs is controlled by the distance between the so called conversion pulses that have to be generated by the FPGA [[#6_references|[1]]].
  
-The capacitance of the two corresponding capacitor plates can differ from their nominal value so that one of the voltages has to be corrected by multiplying correction factor:+Due to this clock generation logic of the ADCs, the sampling frequency can be set with certain granularity described in chapter [[#0_adc_conversion_pulse_length|6.2.2.1]].
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_936443a7.png?nolink&0x24}}+==== 3.2 EXAR XRA1405 GPIO expander ====
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_96c08d2e.png?nolink&0x24}}+The GPIO expanders are used for multiple purposes. Among these is the control of the inputs to each ADC.
  
-The default value of {{:ds:projects:cryring:bpm:gateware:documentation:/math_771c3ab8.png?nolink&0x16}} in the gateware is 1. It is configurable by the software via register accesses.+=== 3.2.1 ADC input selection ===
  
-===== 2.2 Least squares algorithm =====+There are dedicated switch devices in front of each of the differential ADC inputs, which can be controlled independently.
  
-A linear least squares approach is used to reduce measurement errors. The choice of the algorithm is described in [[#15_references|[1]]]. The optimal approach would be an orthogonal least squares algorithm. Since the relative error of the difference signal {{:ds:projects:cryring:bpm:gateware:documentation:/math_3a6a1655.png?nolink&0x18}} dominates that of the sum signal {{:ds:projects:cryring:bpm:gateware:documentation:/math_69c15416.png?nolink&0x13}}, it can be simplified to a vertical least squares algorithm:+The following input settings are available:
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_124da6e9.png?nolink&0x28}}+  * differential p n input pin 
 +  * ground 
 +  * configurable calibration voltage (not implemented yet) 
 +  * fixed calibration voltage of + 4.128 V
  
-Minimizing+=== 3.2.2 Gain selection ===
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_c37704a1.png?nolink&0x25}}+The gain of each differential ADC input pair can be controlled by a dedicated fixed gain amplifier device which can be programmed to an amplifications of 1, 2, 5 or 10.
  
-via partial differentiation+In front of each ADC input there is an attenuator with a fixed gain of 0.4.
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_ef6bcead.png?nolink&0x29}}+In total the following gains are available [[#6_references|[2]]]:
  
-and+^  amplifier gain  ^  input range  ^  resolution per LSB  ^ 
 +|        1          +/- 10.24 V  |    312.5 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V    | 
 +|        2          +/- 5.12 V     156.25 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V    | 
 +|        5          +/- 2.048 V  |    62.5 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V     | 
 +|        10        |  +/- 1.024 V  |    31.25 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V    |
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_21c099c8.png?nolink&0x29}}+===== 4 Gateware implementation =====
  
-leads to+==== 4.1 Clocking ====
  
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_3e26db20.png?nolink&0x50}}+The gateware uses only one primary clock.
  
-**Equation 2.1:** BPM algorithm+=== 4.1.1 PCIe reference clock ===
  
-==== 2.2.1 Variance ==== +The PCIe reference clock has a nominal frequency of 100 MHz and feeds the reference clock input of the PCIe IP core by Xilinx, which contains a PLL producing a 125 MHz output clock for the AXI interface named //clk_125_pcie_axi//.
- +
-The variance of the least squares algorithm result is calculated as follows: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_9a14a8ab.png?nolink&0x50}} +
- +
-==== 2.2.2 Intensity ==== +
- +
-The beam intensity is calculated as follows: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_f9bb7b82.png?nolink&0x39}} +
- +
-===== 2.3 Averaging ===== +
- +
-For further reducing the data rate and reducing the measurement noise, the result of the least squares algorithm is averaged over an adjustable number of samples {{:ds:projects:cryring:bpm:gateware:documentation:/math_b51a6073.png?nolink&0x18}}. This is implemented via a simple block averaging: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_45acdf6b.png?nolink&0x31}} +
- +
-==== 2.3.1 Variance ==== +
- +
-The variance of the averaging result is calculated by averaging the variances and dividing by the averaging length: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_111a6ae5.png?nolink&0x31}} +
- +
-==== 2.3.2 Intensity ==== +
- +
-The average intensity is calculated as follows: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_bc5bf938.png?nolink&0x31}} +
- +
-===== 2.4 Control signals ===== +
- +
-==== 2.4.1 Gate ==== +
- +
-There is an input signal coming from a timing receiver that gates the calculation of the least squares algorithm. A calculation will start with the low to high transition of the gate signal and will be repeated continuously until a high to low transition is detected, after which the current calculation will still be completed. +
- +
-==== 2.4.2 RF pulse ==== +
- +
-The RF pulse signal is intended to synchronize the calculation of the least squares algorithm with the frequency of the particle bunches. A possible previous calculation of the least squares algorithm will be finished and a new calculation will be started whenever a RF pulse is detected. +
- +
-===== 2.5 Parameters ===== +
- +
-==== 2.5.1 Least squares algorithm calculation length ==== +
- +
-This parameter defines the number of ADC samples that will be taken into account by the least squares algorithm if no RF pulses are present. The detection of a RF pulse will override this parameter. The overriding will only work as expected if the calculation length is set to a value that is longer than the period of the RF pulses. +
- +
-The available range of values for the calculation length is 3 to 65536. +
- +
-==== 2.5.2 Averaging length ==== +
- +
-This parameter defines the number of least squares algorithm results that will be taken into account by the averaging algorithm. +
- +
-The available range of values for the averaging length is 1 to 1048576. +
- +
-====== 3 Peripheral devices ====== +
- +
-There are three different peripheral devices on each of the FMC ADC boards that have to be configured by the gateware. Since they have no persistent storage they have to configured after every power cycle: +
- +
-  * Si571 programmable VCXO +
-  * AD9510 PLL and clock distribution +
-  * ISLA216P ADC +
- +
-===== 3.1 Si571 programmable VCXO ===== +
- +
-The Si571 programmable VCXO is connected via I2C using 0x49 as device address. Additionally, there is an OE (output enable) pin, which has to be driven high or left unconnected since it provides an internal pullup. The device supports maximum I2C bus speed of 400 kbit/s. +
- +
-The startup frequency before configuration via I2C is 155.52 MHz. The Si571 is located below the heat spreader of the FMC board, which has to be unscrewed to read the labeling: +
- +
-//SiLabs 571\\ +
-AJC000337 G\\ +
-D09JW702+// +
- +
-The part properties can be decoded by providing the part number 571AJC000337 on a SiLabs web page [[#15_references|[6]]]: +
- +
-Product: Si571\\ +
-Description: Differential/single-ended I2C programmable VCXO; 10-1417 MHz\\ +
-Frequency A: 155.52 MHz\\ +
-I2C Address (Hex Format): 49\\ +
-Format: LVPECL\\ +
-Supply Voltage: 3.3 V\\ +
-OE Polarity: OE active high\\ +
-Temperature Stability: 20 ppm\\ +
-Tuning Slope: 135 ppm/V\\ +
-Minimum APR: +/- 130 ppm\\ +
-Frequency Range. 10 - 280 MHz\\ +
-Operating Temp Range (C): -40 to +85 +
- +
-A datasheet can be found on the SiLabs website [[#15_references|[7]]]. +
- +
-==== 3.1.1 Programming the frequency ==== +
- +
-There are three adjustable parameters that define the output frequency: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_27f33813.png?nolink&0x30}} +
- +
-where +
- +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_0f4907ea.png?nolink&0x22}} is the fixed internal quartz frequency of 114.285 MHz +/- 2000 ppm. +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_b81f82c3.png?nolink&0x22}} has to be in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_5163883c.png?nolink&0x25}}. +
-  * allowed values for {{:ds:projects:cryring:bpm:gateware:documentation:/math_31997e82.png?nolink&0x18}} are 4, 5, 6, 7, 9, 11 +
-  * allowed values for {{:ds:projects:cryring:bpm:gateware:documentation:/math_0604b491.png?nolink&0x18}} are 1 and all even numbers in {{:ds:projects:cryring:bpm:gateware:documentation:/math_35727f6a.png?nolink&0x25}} +
- +
-The three parameters should be chosen in a way that {{:ds:projects:cryring:bpm:gateware:documentation:/math_ac2f27fe.png?nolink&0x22}} is minimal to reduce power consumption. If there should still be multiple possibilities for the choice of {{:ds:projects:cryring:bpm:gateware:documentation:/math_f246e0f3.png?nolink&0x18}}, one should choose {{:ds:projects:cryring:bpm:gateware:documentation:/math_31997e82.png?nolink&0x18}} as maximal. +
- +
-For a desired output frequency of 125 MHz the optimum values are: +
- +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_31997e82.png?nolink&0x18}} = 5 +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_0604b491.png?nolink&0x18}} = 8 +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_ac2f27fe.png?nolink&0x22}} = 43.750273439 +
- +
-Since the uncorrected {{:ds:projects:cryring:bpm:gateware:documentation:/math_0f4907ea.png?nolink&0x22}} frequency has an inaccuracy of 2000 ppm, one should read the initial {{:ds:projects:cryring:bpm:gateware:documentation:/math_ac2f27fe.png?nolink&0x22}} value first and calculate +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_94132f14.png?nolink&0x34}} +
- +
-in order to get a more accurate result. {{:ds:projects:cryring:bpm:gateware:documentation:/math_4fb27849.png?nolink&0x22}} is factory calibrated to compensate the actual frequency offset of {{:ds:projects:cryring:bpm:gateware:documentation:/math_0f4907ea.png?nolink&0x22}}. +
- +
-The VCXO has a built-in configuration timeout of 10 ms. All I2C write operations from freezing to unfreezing the digitally controlled oscillator have to complete during this period to become active. +
- +
-==== 3.1.2 Configuration ==== +
- +
-The following registers are read by the gateware for calculating the frequency correction: +
- +
-^   **address**^**description**                                  ^ +
-|  ''%%0x07%%''|HSDIV - 4 (bits 7 - 5), N1 - 1 MSB (bits 4 - 0)  | +
-|  ''%%0x08%%''|RFREQ MSB (bits 5 - 0)                           | +
-|  ''%%0x09%%''|RFREQ                                            | +
-|  ''%%0x0A%%''|RFREQ                                            | +
-|  ''%%0x0B%%''|RFREQ                                            | +
-|  ''%%0x0C%%''|RFREQ LSB                                        | +
- +
-**Table 3.1:** Si571 registers read by the gateware +
- +
-The value of register 0x07 is only used to determine if the frequency has been programmed before, e.g. after a reloading of the bitstream of the FPGA without a power cycle of the FMC ADC board. The initial value of HSDIV is 4 and it is programmed to 5. Applying the frequency correction again would lead to a wrong result, since the RFREQ registers do not contain the factory defaults any more. +
- +
-The following registers are programmed by the gateware after the calculation of the frequency correction: +
- +
-^   **address**^                           **value**^**description**                                   ^ +
-|  ''%%0x89%%''                       ''%%0x10%%''|freeze digitally controlled oscillator (bit 4)    | +
-|  ''%%0x07%%''                       ''%%0x21%%''|HSDIV - 4 (bits 7 - 5), N1 - 1 MSB (bits 4 - 0)   | +
-|  ''%%0x08%%''                       ''%%0xC2%%''|N1 - 1 LSB (bits 7 - 6), RFREQ MSB (bit 5 - 0)    | +
-|  ''%%0x09%%'' result of the frequency correction|RFREQ                                             | +
-|  ''%%0x0A%%'' result of the frequency correction|RFREQ                                             | +
-|  ''%%0x0B%%'' result of the frequency correction|RFREQ                                             | +
-|  ''%%0x0C%%'' result of the frequency correction|RFREQ LSB                                         | +
-|  ''%%0x89%%''                       ''%%0x00%%''|unfreeze digitally controlled oscillator (bit 4)  | +
-|  ''%%0x87%%''                       ''%%0x40%%''|new frequency applied (bit 6)                     | +
- +
-**Table 3.2:** Si571 registers programmed by the gateware +
- +
-==== 3.1.3 List of devices ==== +
- +
-^  **FMC version**  ^  **serial number**  ^   **initial HSDIV**    ^  **programmed HSDIV**  ^  **measured frequency in Hz**  ^  **mounted on AFC**  ^  **FMC slot** +
-|       v2.3        |       155107        |  ''%%0x02B8EF1D6D%%''  |  ''%%0x02BC3497C2%%''  |           125024480            |        240030        |              | +
-|       v2.3        |       301236        |  ''%%0x02B8F28CD4%%''  |  ''%%0x02BC380B4A%%''  |           125024401            |        240030        |              | +
-|       v1.2        |          ?          |  ''%%0x02B8BC2738%%''  |  ''%%0x02BC016450%%''  |           124974845            |        111154        |              | +
-|       v1.0        |          ?          |  ''%%0x02B94432E0%%''  |  ''%%0x02BC8A1373%%''  |           124975700            |        111154        |              | +
- +
-The frequency is measured relatively to the processing clock of the AFC board. The values were measured with the PLL enabled. TODO: measure with disabled PLL. +
- +
-===== 3.2 AD9510 PLL and clock distribution ===== +
- +
-The Analog Devices AD9510 is connected via SPI. Writing to registers must be completed with a write to the register address 0x5A with the LSBit set in the write value (e.g. 0x01) to take effect. Multiple writes can precede the writing of register 0x5A, so that this needs to be done only once at the end of a write sequence. The maximum SPI clock frequency is 25 MHz. +
- +
-The phase frequency detector of the PLL, which compares the VCXO frequency to the reference frequency, has a maximum input frequency of 100 MHz. Higher frequencies have to be divided by the prescalers R (reference input) and N (VCXO input). A lock signal can be connected to a status pin, that is connected to a FPGA GPIO. +
- +
-A datasheet can be found on the Analog Devices website [[#15_references|[8]]]. +
- +
-==== 3.2.1 Configuration ==== +
- +
-The gateware configures the AD9510 device to lock the VCXO frequency to a reference clock coming from the FPGA.\\ +
-The following registers are programmed by the gateware: +
- +
-^   **address**^     **value**^**description**                                                                        ^ +
-|  ''%%0x08%%'' ''%%0x33%%''|normal charge pump mode (bits 1 - 0), analog lock detect on STATUS pin (bit 5 - 2)     | +
-|  ''%%0x09%%'' ''%%0x70%%''|charge pump current: 4.8 mA (bits 6 - 4)                                               | +
-|  ''%%0x0A%%'' ''%%0x44%%''|PLL power up (bits 1 - 0), VCXO prescaler: 2 (bits 4 - 2), B counter bypass (bit 6)    | +
-|  ''%%0x0B%%'' ''%%0x00%%''|R divider MSB                                                                          | +
-|  ''%%0x0C%%'' ''%%0x02%%''|R divider LSB: divide reference clock input by 2                                       | +
-|  ''%%0x0D%%'' ''%%0x02%%''|anti backlash pulse width: 6.0 ns (bit 1 - 0)                                          | +
-|  ''%%0x3C%%'' ''%%0x08%%''|output 0 voltage: 810 mV (bits 3 - 2), output 0 enable (to ADC 0, bits 1 - 0)          | +
-|  ''%%0x3D%%'' ''%%0x08%%''|output 1 voltage: 810 mV (bits 3 - 2), output 1 enable (to ADC 1, bits 1 - 0)          | +
-|  ''%%0x3E%%'' ''%%0x08%%''|output 2 voltage: 810 mV (bits 3 - 2), output 2 enable (to ADC 2, bits 1 - 0)          | +
-|  ''%%0x3F%%'' ''%%0x08%%''|output 3 voltage: 810 mV (bits 3 - 2), output 3 enable (to ADC 3, bits 1 - 0)          | +
-|  ''%%0x40%%'' ''%%0x03%%''|output 4 power down (bit 0)                                                            | +
-|  ''%%0x41%%'' ''%%0x03%%''|output 5 power down (bit 0)                                                            | +
-|  ''%%0x42%%'' ''%%0x03%%''|output 6 power down (bit 0)                                                            | +
-|  ''%%0x43%%'' ''%%0x02%%''|output 7 current 3.5 mA (bits 2 - 1), output 7 enable (to FPGA for monitoring, bit 0)  | +
-|  ''%%0x45%%'' ''%%0x02%%''|clk1 power down (bit 1), clock input from clk2 (VCXO) (bit 0)                          | +
-|  ''%%0x49%%'' ''%%0x80%%''|bypass the divider in front of output 0 (bit 7)                                        | +
-|  ''%%0x4B%%'' ''%%0x80%%''|bypass the divider in front of output 1 (bit 7)                                        | +
-|  ''%%0x4D%%'' ''%%0x80%%''|bypass the divider in front of output 2 (bit 7)                                        | +
-|  ''%%0x4F%%'' ''%%0x80%%''|bypass the divider in front of output 3 (bit 7)                                        | +
-|  ''%%0x57%%'' ''%%0x80%%''|bypass the divider in front of output 7 (bit 7)                                        | +
-|  ''%%0x5A%%'' ''%%0x01%%''|load the register bank overlay to the actual register bank (bit 0)                     | +
- +
-**Table 3.3:** AD9510 registers programmed by the gateware +
- +
-===== 3.3 ISLA216P ADC ===== +
- +
-The four ISLA216P ADCs are connected via SPI. The communication to each chip is enabled via an individual chip select line. The MOSI, MISO and CLK lines are shared between the four chips. Parallel configuration by driving all chip selects high at the same time works for the writing registers, but not for reading, since there would be multiple drivers on the MISO line. The maximum SPI clock frequency is given by the ADC sampling frequency divided by 16. At a sample frequency of 125 MHz this corresponds to a SPI clock frequency of 7.8125 MHz. +
- +
-A datasheet can be found on the Renesas website [[#15_references|[9]]]. +
- +
-The ADCs provide a configurable gain correction of +/- 4.2% and a configurable offset correction of +/- 138 LSBs. Since the gain correction and the offset correction are implemented digitally in the gateware, most of the configuration registers can be left at their default values. +
- +
-The SPI interface in the gateware is implemented as a four wire interface, whereas the default setting of the ISLA216P SPI interface is a three wire mode. For being able to configure the ISLA216Ps interactively, the gateware configures the corresponding register to four wire mode at start up. +
- +
-==== 3.3.1 Configuration ==== +
- +
-The following registers are programmed by the gateware: +
- +
-^   **address**^     **value**^**description**                                                        ^ +
-|  ''%%0x00%%'' ''%%0x80%%''|enable four wire mode (enable the usage of a dedicated SPI MISO line)  | +
- +
-**Table 3.4:** ISLA216P registers programmed by the gateware +
- +
-====== 4 Gateware implementation ====== +
- +
-===== 4.1 Clocking ===== +
- +
-The gateware uses three primary clocks: +
- +
-  * PCIe reference clock, 100 MHz +
-  * FMC 0 ADC clock, 125 MHz +
-  * FMC 1 ADC clock, 125 MHz +
- +
-==== 4.1.1 PCIe reference clock ==== +
- +
-The PCIe reference clock comes from an output of an ADN4604 clock switch on the AFC board [[#15_references|[11]]]. The clock switch is controlled via I2C by the MMC firmware to output a 100 MHz clock, which enters the FPGA as a differential input signal on pins H20 and G20. The PCIe reference clock feeds the reference clock input of the PCIe IP core by Xilinx, which contains a PLL producing a 125 MHz output clock for the AXI interface named //clk_125_pcie_axi//.+
  
 //clk_125_pcie_axi// drives a MMCM to generate: //clk_125_pcie_axi// drives a MMCM to generate:
  
-  * //clk_125//, 125 MHz, this is the main processing clock of the design +  * //clk_100//, 100 MHz, this is the main processing clock of the design
-  * //clk_100//, 100 MHz, used for reading the FPGA serial number+
   * //clk_200//, 200 MHz, used for the SDRAM interface IP core by Xilinx   * //clk_200//, 200 MHz, used for the SDRAM interface IP core by Xilinx
 +  * //clk_50//, 50 MHz, used for generating a 210 MHz clock for the ADC interface
  
 The SDRAM interface IP core contains a MMCM which generates a 100 MHz clock named //clk_100_sdram// for the AXI interface. The SDRAM interface IP core contains a MMCM which generates a 100 MHz clock named //clk_100_sdram// for the AXI interface.
  
-==== 4.1.2 FMC ADC clocks ==== +==== 4.2 Resets ====
- +
-On each of the two FMC boards there is a Si571 programmable VCXO (see [[#31_si571_programmable_vcxo|chapter 3.1]]) which feeds the four ADCs. The frequency of the VCXO can be coupled to a reference clock coming from the FPGA (see [[#32_ad9510_pll_and_clock_distribution|chapter 3.2]]). The VCXO is programmed to a nominal output frequency of 125 MHz and coupled by the PLL with //clk_125// coming from the FPGA. Bringing the PLL to lock is quite demanding, so that with the current settings a stable lock can not be guaranteed. +
- +
-From each of the four ADCs of an FMC board an individual clock signal is led to the FPGA which is used for the deserialization in the IDDR primitives. For the further processing, only the clock signal from the first ADC of a FMC board is used since the clock frequencies of the four ADCs are identical.+
  
-There are two clock domain crossing FIFOs in the gateware to synchronize the data from the ADCs to the main processing clock //clk_125//.+=== 4.2.1 PLL not in lock ===
  
-===== 4.2 Resets =====+As long as the PLL in the MMCM producing the main processing clock //clk_100// is not yet in lock, the design is held in reset. After this the lock should be stable until the next power cycle.
  
-==== 4.2.1 PLL not in lock ====+=== 4.2.2 PCIe reset ===
  
-As long as the PLL in the MMCM producing the main processing clock //clk_125// is not yet in lock, the design is held in reset. After this the lock should be stable until the next power cycle.+The design will be reset whenever the PCIe connection is re-initialized. This happens e.g. when the FEC is rebooted.
  
-==== 4.2.Reset button ====+=== 4.2.Reset button ===
  
 There is a push button labeled //RST// at the center of the AFC front panel which is connected to the microcontroller for the MMC firmware. The OpenMMC firmware forwards a button press with a duration of at least two seconds to the FPGA pin AG26 as an active low signal to initiate a reset of the gateware. There is a push button labeled //RST// at the center of the AFC front panel which is connected to the microcontroller for the MMC firmware. The OpenMMC firmware forwards a button press with a duration of at least two seconds to the FPGA pin AG26 as an active low signal to initiate a reset of the gateware.
  
-Resetting the FPGA leads to the loss of the PCIe connection. To re-enable the connection, the CPU unit has to be power cycled.+Resetting the FPGA leads to the loss of the PCIe connection. To re-enable the connection, the FEC has to be rebooted.
  
-===== 4.3 Data flow diagram =====+==== 4.3 Data flow diagram ====
  
-{{:ds:projects:cryring:bpm:gateware:documentation:gateware_block_diagram.png| Simplified data flow diagram}}+{{:ds:projects:unimon:gateware:gateware_block_diagram.png}}
  
 **Figure 4.1:** Simplified data flow diagram **Figure 4.1:** Simplified data flow diagram
  
-Figure 4.1 shows a simplified data flow diagram. For simplicity, some features are not included in the diagram:+Figure [[#figure:Simplified_data_flow_diagram|4.1]] shows a simplified data flow diagram. For simplicity, some features are not included in the diagram:
  
   * processing clocks and clock domain crossings   * processing clocks and clock domain crossings
   * resets   * resets
-  * gate and RF pulse inputs 
-  * ADC data offset and gain corrections 
   * LEDs   * LEDs
   * read out logics of FPGA serial number and build time stamp   * read out logics of FPGA serial number and build time stamp
-  * ADC maximum amplitude calculation +  * data width conversions of AXI connections
-  * signals connected to the observer +
-  * data width conversions of AXI and AXI Stream connections+
  
-===== 4.4 Input delays ===== +==== 4.4 PCIe Interface ====
- +
-The data inputs from the ADCs require a latency correction to compensate clock and routing delays. This is implemented via individually configurable input delay primitives for both the clock and for the data input pins. By increasing the input delay of either a clock or of the associated data inputs, the alignment can be corrected in both directions. +
- +
-The input delays provide a 32 tap delay line with a configurable delay between 0 to 31 taps [[#15_references|[10]]]. Each tap corresponds to a delay of: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/math_2b1453a9.png?nolink&0x33}} +
- +
-with {{:ds:projects:cryring:bpm:gateware:documentation:/math_3940aa48.png?nolink&0x24}} being the frequency of the clock connected to the IDELAYCTRL primitive. With the 200 MHz clock connected in this design this corresponds to a tap delay value of 78 s. +
- +
-==== 4.4.1 Calculation of optimal delay values ==== +
- +
-The ADCs offers programmable user patterns that can be sent in place of the ADC samples to check the correct timing of the digital interface. For finding the optimum delay values, the following procedure is applied: +
- +
-  * The clock input delay is increased until the pattern begins to deteriorate and the delay index at which that happens is noted. +
-  * After that the clock input delay is reset to 0 and the data delay is increased until the pattern begins to deteriorate. +
-  * The optimum value is assumed to be the midpoint between these values. +
- +
-There is a configuration file ''%%src/software/fpga_observer/config/enable_adc_test_patterns.csv%%'' which programs the ADCs to output reference patterns, which can be used together with the FPGA Observer software (see [[#816_peripherals_configuration_tab|chapter 8.1.6]]). +
- +
-==== 4.4.2 Chosen delay values ==== +
- +
-For an ADC clock frequency of 125 MHz the optimal delay values are: +
- +
-  * FMC0: no deterioration at any clock delay, but deterioration at and above data delay 0x06 +
-    * ADC clock delay value: 0x0D +
-    * ADC data delay value: 0x00 +
-  * FMC1: no deterioration at any clock delay, but deterioration at and above data delay 0x05 +
-    * ADC clock delay value: 0x0D +
-    * ADC data delay value: 0x00 +
- +
-These values are programmed to the IDELAY primitives at start up. They can be changed via individual configuration registers (see [[#711_additional_configuration_registers|chapter 7.1.1]]). +
- +
-===== 4.5 Clock domain crossings ===== +
- +
-Even though the FMC clocks are coupled to the main processing clock by the FMC’s PLLs, they can jitter against the main processing clock or even run at a slightly different frequency if the PLLs unlock for any reason. +
- +
-To prevent data corruption, two clock domain crossing FIFOs are used for the incoming ADC data, one for each FMC board. In the case of frequency deviations, there are two cases to differentiate: +
- +
-  - the FMC clock is running slightly faster than the processing clock: +
-    * one sample at a time will be discarded +
-    * this happens synchronous for all four ADCs of a FMC board +
-  - the FMC clock is running slightly slower than the processing clock: +
-    * one sample at a time will be repeated +
-    * this happens synchronous for all four ADCs of a FMC board +
- +
-Due to the synchronous handling of the four ADCs on a FMC board, the discarding or repetition of samples should not have any measurable effect on the BPM results, since the two inputs to each BPM come from the same FMC board. +
- +
-===== 4.6 Gate signal ===== +
- +
-The gate signal is fed to the FPGA via one of the eight MLVDS lines on the AMC connector. The selection is made via a configuration register (see [[#621_configuration_registers|chapter 6.2.1]]). The register’s default is to route MLVDS line 0 to the gate input of the BPM algorithm. +
- +
-===== 4.7 RF signal ===== +
- +
-The pulses of the RF signal define the length of the linear regression in the BPM algorithm. The selection is made via a configuration register (see [[#621_configuration_registers|chapter 6.2.1]]). As a default, the RF signal is fed to the FPGA via the MMCX connector labeled //TRIG// on the front panel of FMC 1. In this case this signal is valid for both FMCs and the //TRIG// input of FMC 2 is not used. +
- +
-===== 4.8 BPM algorithm ===== +
- +
-The proportionality factor {{:ds:projects:cryring:bpm:gateware:documentation:/math_397916aa.png?nolink&0x13}} in equation 2.1 is set implicitly to 1 so that the result has to interpreted as a relative position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_b61210c8.png?nolink&0x25}}: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_b35b39a0.png?nolink&0x50}} +
- +
-**Equation 4.1:** Normalized BPM algorithm +
- +
-The capacitance correction (see [[#21_capacitance_correction|chapter 2.1]]) and the linear regression (equation 4.1) are implemented as a pipelined algorithm. The processing clock is equal to the sampling frequency of the ADCs. +
- +
-==== 4.8.1 Pipeline steps performed every clock cycle ==== +
- +
-The gain correction, the differences and sums of the incoming ADC data pairs {{:ds:projects:cryring:bpm:gateware:documentation:/math_69c15416.png?nolink&0x13}} and {{:ds:projects:cryring:bpm:gateware:documentation:/math_3a6a1655.png?nolink&0x18}} and the four different sums of equation 4.1 are calculated every clock cycle. +
- +
-=== Step 0: Capacitance correction === +
- +
-  * offset and gain corrected ADC 0 data sample is strobed unchanged. Input: 17 bits signed, output 17 bits signed +
-  * offset and gain corrected ADC 1 data sample is multiplied with a correction factor coming from a configuration register. Input: 17s bit signed for data, 16 bits unsigned for correction factor, output 17 bits signed +
- +
-=== Step 1: Calculation of sum and difference signals === +
- +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_69c15416.png?nolink&0x13}}: sum of data 0 and data 1, inputs: 17 bits signed, output: 18 bits signed +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_3a6a1655.png?nolink&0x18}}: difference of data 0 and data 1, inputs: 17 bits signed, output: 18 bits signed +
- +
-=== Step 2: Calculation of products, sign extension, summation === +
- +
-The maximum word length of the adders in the DSP48 blocks of the FPGA is 48 bits. When using these adders, the maximum summation length is limited by the word length of longest term {{:ds:projects:cryring:bpm:gateware:documentation:/math_92d6846a.png?nolink&0x18}} (36) to a value of 12. +
- +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_160e4edd.png?nolink&0x26}}: inputs: 18 bits signed, output: 48 bits signed +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_62936438.png?nolink&0x27}}: input: 18 bits signed, output: 48 bits signed +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_b051ae52.png?nolink&0x26}}: input: 18 bits signed, output: 30 bits signed +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_19017b62.png?nolink&0x26}}: input: 18 bits signed, output: 30 bits signed +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_b51a6073.png?nolink&0x18}}: counter, output: 12 bits unsigned +
- +
-==== 4.8.2 Pipeline steps performed with a reduced data rate ==== +
- +
-The following pipeline steps are only performed once for every linear regression period. The length of the linear regression period is defined by the BPM linear regression length register (see [[#621_configuration_registers|chapter 6.2.1]]). +
- +
-If a RF signal is present, the length is additionally controlled by the distances of the pulses of this signal. A new linear regression calculation will be started with every rising edge of the RF signal, while the post processing steps for the previous period will be started. +
- +
-=== Step 3: Conversion to floating point === +
- +
-The DSP48 blocks in the FPGA can only handle multiplications up to 18 bits times 25 bits. For this reason, a conversion to a floating point format is performed. +
- +
-The floating point format is: +
- +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_eb46f906.png?nolink&0x17}}: 18 bits signed (integer, not fractional as usual for floating point formats) +
-  * {{:ds:projects:cryring:bpm:gateware:documentation:/math_69cc8412.png?nolink&0x21}}: 6 bits unsigned +
- +
-which decodes to: {{:ds:projects:cryring:bpm:gateware:documentation:/math_a963fbfa.png?nolink&0x20}} +
- +
-The sums {{:ds:projects:cryring:bpm:gateware:documentation:/math_160e4edd.png?nolink&0x26}}, {{:ds:projects:cryring:bpm:gateware:documentation:/math_62936438.png?nolink&0x27}}, {{:ds:projects:cryring:bpm:gateware:documentation:/math_b051ae52.png?nolink&0x26}} and {{:ds:projects:cryring:bpm:gateware:documentation:/math_19017b62.png?nolink&0x26}} are converted to float. +
- +
-A conversion is not necessary for {{:ds:projects:cryring:bpm:gateware:documentation:/math_b51a6073.png?nolink&0x18}} since it is only 12 bits wide. +
- +
-=== Step 4: Calculation of the products of sums === +
- +
-The products {{:ds:projects:cryring:bpm:gateware:documentation:/math_c07e31f0.png?nolink&0x26}}, {{:ds:projects:cryring:bpm:gateware:documentation:/math_9b22aba4.png?nolink&0x26}}, {{:ds:projects:cryring:bpm:gateware:documentation:/math_f6f5662e.png?nolink&0x27}} and {{:ds:projects:cryring:bpm:gateware:documentation:/math_30e95614.png?nolink&0x27}} are calculated by multiplying the mantissas and by adding the exponents of the floating point representations. +
- +
-=== Step 5: Shifting to align for subtraction and sign extensions === +
- +
-In general the results of step 4 will have different exponents, so that the mantissas have to be shifted to a common exponent before a subtraction can take place. +
- +
-The mantissa of the float number with the smaller exponent is shifted by the difference of exponents digits to the right and the exponent is set to the larger exponent. Sign extensions by 1 bit take place to prevent over- and underflows by the subtraction. +
- +
-=== Step 6: Calculation of the subtractions in the numerator and the denominator === +
- +
-Now that the operands have the same exponent, the subtractions can take place by subtracting the mantissas. +
- +
-The exponents of the results stay the same as that of the operands. +
- +
-The results are: {{:ds:projects:cryring:bpm:gateware:documentation:/math_8eb292c6.png?nolink&0x26}} and {{:ds:projects:cryring:bpm:gateware:documentation:/math_99162b0c.png?nolink&0x27}} +
- +
-=== Step 7: Conversion of the mantissas to floating point === +
- +
-Due to the multiplication in step 4 and the sign extension in step 5 the mantissas have now a length of 37 bits, which is again too long for the final division. The mantissa is converted to the same floating point format as described in step 4. +
- +
-The results respectively have a mantissa of 18 bits and two exponents of 6 bits each which have to be united in the next step. +
- +
-=== Step 8: Unification of exponents and start of division === +
- +
-Division is a costly operation in FPGAs. In this implementation it is performed by an IP core by Xilinx which is parametrized to 18 bits for both the divisor and the dividend. The result is 33 bits wide, of which 15 bits are fractional. +
- +
-The division takes 25 clock cycles to complete. The divider IP core reaches a throughput of 1 in 3 clock cycles. Thus 3 is the lower limit for the linear regression length for the current settings of the IP core. +
- +
-The exponents generated in step 7 are united to the existing ones from step 6 by addition. +
- +
-=== Step 9 - 32: Waiting for the division to complete === +
- +
-The results of step 8 are pipelined until the completion of the division. +
- +
-=== Step 33: Shifting and slicing the division result === +
- +
-The division result is shifted to the right by minus the exponent from step 8. After that, the lower 16 bits are sliced to form the result of the linear regression algorithm. +
- +
-The result has to be interpreted as a relative position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_7f666a97.png?nolink&0x25}}, multiplied by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}}. +
- +
-Two signals are created for debugging purposes and are connected to the signal observer (see [[#4112_observer|chapter 4.11.2]]): +
- +
-  * //result out of range// (1 bit): High if the absolute value of the numerator is greater than that of the denominator. This can happen if the phases of the two input signals are not aligned. In this case the result is set to the maximum or minimum value. +
-  * //division by zero// (1 bit): Comes from the divider IP core and is high if the divisor is zero. This is very unlikely to happen. In this case the result is set to 0. +
- +
-=== Limitations === +
- +
-Allowed values for the linear regression length are: 3, 4, 5, … , 4096 +
- +
-The lower limit is caused by the divider IP core which can only handle one division in three clock cycles. +
- +
-The upper limit is caused by the maximum operand length of the adder in the DSP48 primitives in the FPGA. A higher limit would be implementable at the cost of an increased resource usage and two additional clock cycles of processing latency. +
- +
-===== 4.9 BPM averaging ===== +
- +
-The result from the BPM algorithm is sign extended and added up until the desired number of samples is reached. Only powers of two are allowed for the averaging length. Allowing any desired number would require a general division operation at the end of the averaging process, whereas a division by a power of two can be implemented by a simple shift operation. This is why the configuration register ’log2 of BPM averaging length’ contains the dual logarithm of the averaging length (see [[#621_configuration_registers|chapter 6.2.1]]). +
- +
-The result is sliced to the same number of bits as the result from the BPM algorithm. It also has to be interpreted as a relative position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_7f666a97.png?nolink&0x25}}, multiplied by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}}. +
- +
-Available values for the averaging length are 1, 2, 4, … , 1,048,576. +
- +
-The upper limit is not caused by any implementation limitation, but was simply chosen because longer averaging lengths were not assumed to be useful. +
- +
-===== 4.10 AXI infrastructure ===== +
- +
-The memory mapped data transfers inside the FPGA are handled via the AXI protocol using a star topology with a central interconnect. The common data width is 256 bits and the common clock is the main processing clock of 125 MHz. +
- +
-The AXI masters connected to the interconnect are: +
- +
-  * PCIe interface +
-  * scope 0 / observer +
-  * scope 1 +
-  * scope 2 +
- +
-The PCIe interface only supports an AXI data width of 128 bits, so that an AXI data width converter is used to be able to connect it to the interconnect. A clock domain crossing also takes place despite identical frequencies, since the AXI clock of the PCIe interface is derived directly from the PCIe reference clock and could jitter against the independently derived main processing clock. +
- +
-The AXI slaves connected to the interconnect are: +
- +
-  * SDRAM interface +
-  * register bank / Block RAM +
- +
-The SDRAM interface only supports an AXI clock frequency of 100 MHz, so that an AXI clock converter is used to synchronize it to the main processing clock. +
- +
-The AXI interconnect is configured to connect the scopes only to the SDRAM interface and only with write access since other accesses are not needed. +
- +
-Even though there is no need for the PCIe interface to write to the SDRAM, this access is enabled because otherwise the PCIe driver will crash in case of an erroneous write access to the SDRAM. +
- +
-===== 4.11 AXI Stream infrastructure ===== +
- +
-The scopes / the observer internally use an AXI Stream bus to process the incoming data. The final data stream is converted to the AXI protocol. +
- +
-==== 4.11.1 Scopes ==== +
- +
-There are three so called scopes for interactively storing calculation results. For the storage format of the scope data see [[#61_scope_memory|chapter 6.1]]. +
- +
-=== Scope 0: corrected ADC data === +
- +
-Since the frequency of the incoming ADC data samples is identical to the AXI clock, the data samples are parallized twice to allow flow controlled data processing. This also converts the 128 bits wide ADC data stream (8 * 16 bits) to the common AXI data width of 256 bits. +
- +
-An IP core called //AXI data mover// manages the write access to the SDRAM. The block size of the AXI bus accesses is set to 4 MiBytes to allow a low protocol overhead. A block size of 256 bits (width of a single data word) would slow down the transmission in a way that the necessary data rate to store all incoming ADC data samples would not be reached. +
- +
-=== Scope 1: BPM results === +
- +
-The data rate of the BPM results is slow enough so that they do not have to be parallized before the transmission. +
- +
-For the same reason, the block size of the AXI bus accesses can be set to the width of a single data word which simplifies the transmission handling. +
- +
-=== Scope 1: BPM averaging results === +
- +
-The data rate of the BPM averaging results is even slower than that of the BPM results, so that the same mechanism can be used. +
- +
-==== 4.11.2 Observer ==== +
- +
-The observer uses the same infrastructure as scope 0, so that they cannot used at the same time. It additionally implements more complex observing features and a configurable two-state trigger. +
- +
-The observer allows a visibility equivalent to an ILA (Integrated Logic Analyzer) without the need to connect a JTAG adapter. The input to the observer can be chosen from eight input vectors of 64 bits each. +
- +
-The trigger can be set to each bit of each input vector or a combination of those and the two trigger stages can be used to detect signal transitions. +
- +
-===== 4.12 Configuration of peripheral devices ===== +
- +
-The peripheral devices documented in [[#3_peripheral_devices|chapter 3]] are initially programmed by the gateware. During operation, they can be configured using the corresponding gateware registers (see [[#711_additional_configuration_registers|chapter 7.1.1]]). +
- +
-==== 4.12.1 SPI Interface ==== +
- +
-There is an individual SPI interface for each of the two FMC boards. It is implemented as a four wire interface and connects to the four ADCs and to the PLL on the FMC ADC boards. The choice of the communication partner is implemented via indivial chip select lines. +
- +
-==== 4.12.2 I2C Interface ==== +
- +
-There is an individual I2C interface for each of the two FMC boards. It only connects to the VCXO. The VCXO’s transaction timeout has to be kept in mind when programming it interactively (see [[#31_si571_programmable_vcxo|chapter 3.1]]. +
- +
-===== 4.13 PCIe Interface =====+
  
 This gateware uses the Xilinx IP core //DMA/Bridge Subsystem for PCI Express// with the following configuration: This gateware uses the Xilinx IP core //DMA/Bridge Subsystem for PCI Express// with the following configuration:
Line 639: Line 177:
 The PCIe reference clock is routed to the FPGA via the MMC firmware and is configured to be driven by the 100 MHz //FCLKA// clock coming from the AMC connector. The PCIe reference clock is routed to the FPGA via the MMC firmware and is configured to be driven by the 100 MHz //FCLKA// clock coming from the AMC connector.
  
-===== 4.14 SDRAM interface =====+==== 4.SDRAM interface ====
  
-For the communication with the SDRAM, an IP core by Xilinx is used. The clock frequency of the SDRAM interface’s AXI bus is 100 MHz, so that an AXI clock converter is used to connect it to the rest of the AXI infrastructure which is clocked at 125 MHz.+For the communication with the SDRAM, an IP core by Xilinx is used. The clock frequency of the SDRAM interface’s AXI bus is 100 MHz, but has a different source so that an AXI clock converter is used to connect it to the rest of the AXI infrastructure which is clocked at the main processing clock of 100 MHz.
  
-====== 5 Build flow and simulation ======+==== 4.6 Observer ====
  
-The build flow is designed and tested to be run on a Linux operation system. The bitstream generation should also work on a Windows installation, but the depending Bash and Python scripts would have to be adapted for Windows. For example, there is one generated VHDL file ''%%src/vhdl/generated_constant_package.vhd%%'' which is generated by the script ''%%src/scripts/generate_monitoring_and_control.py%%'' using the content of the configuration files in ''%%src/config%%''.+This project incorporates the observer interface from the //FPGA_Common// Git submodule (see https://git.gsi.de/BEA_HDL/FPGA_Common#13-observer).
  
-===== 5.1 Prerequisites =====+The following signals are connected to the observer inputs:
  
-An installation of Xilinx Vivado is required. Currently the IP cores are built for version 2019.so that this version should be installed.+^       value^input vector(64 bits)               ^valid signal                  ^ 
 +|   ''%%0%%''|corrected ADC data of ADCs 0 - 3    |corrected ADC data valid (0)  | 
 +|   ''%%1%%''|corrected ADC data of ADCs 4 - 7    |corrected ADC data valid (0)  | 
 +|   ''%%2%%''|corrected ADC data of ADCs 8 - 11   |corrected ADC data valid (0)  | 
 +|   ''%%3%%''|corrected ADC data of ADCs 12 - 15  |corrected ADC data valid (0)  | 
 +|   ''%%4%%''|corrected ADC data of ADCs 16 - 19  |corrected ADC data valid (0)  | 
 +|   ''%%5%%''|corrected ADC data of ADCs 20 - 23  |corrected ADC data valid (1)  | 
 +|   ''%%6%%''|corrected ADC data of ADCs 24 - 27  |corrected ADC data valid (1)  | 
 +|   ''%%7%%''|corrected ADC data of ADCs 28 - 31  |corrected ADC data valid (1)  | 
 +|   ''%%8%%''|corrected ADC data of ADCs 32 - 35  |corrected ADC data valid (1)  | 
 +|   ''%%9%%''|corrected ADC data of ADCs 36 - 39  |corrected ADC data valid (1)  | 
 +|  ''%%10%%''|value of the eight MLVDS inputs     |1                             |
  
-You can set your preferred Vivado version in the script ''%%src/config/project_config.sh%%''.+The rest of the multiplexer inputs are connected to zero.
  
-===== 5.2 Build flow =====+===== 5 Gateware software interface =====
  
-==== 5.2.1 Scripted build flow ==== +The communication between the gateware and the software takes place via a PCIe driver by Xilinx called XDMA. There is only one PCIe Bar in use in the gateware which maps the memory space to different physical memories on the AMC board.
- +
-For a completely automatic script based build flow without using the Vivado GUI proceed as follows: +
- +
-  * navigate to the root folder of the repository in a terminal +
-  * type ''%%run/run_build_flow.sh%%'' +
- +
-A project will be generated in the folder ''%%output/<Vivado version>/build_flow%%''. The bitstream (if successful) will be generated in the subfolder ''%%aft_top.runs/impl_1%%''+
- +
-==== 5.2.2 Vivado GUI based build flow ==== +
- +
-=== Via a Bash script === +
- +
-  * navigate to the root folder of the repository in a terminal +
-  * type ''%%run/create_project.sh%%'' +
- +
-This will open the Vivado GUI and set up a project, which can take some minutes. The project will be generated in the folder ''%%output/<Vivado version>/project%%''+
- +
-=== Via the Vivado GUI === +
- +
-If you intend to use the Vivado GUI itself to set up the project proceed as follows: +
- +
-  * open Vivado +
-  * use the TCL console in the bottom of the GUI to navigate to ''%%src/scripts%%'' using the commands ''%%pwd%%'' and ''%%cd%%'' +
-  * type ''%%source create_project.tcl%%'' in the TCL console. This will set up the Vivado project. +
- +
-===== 5.3 Simulation ===== +
- +
-==== 5.3.1 Vivado GUI based simulation ==== +
- +
-Prerequisite: an existing Vivado project see [[#522_vivado_gui_based_build_flow|chapter 5.2.2]]. +
- +
-Click on //Run Simulation// in the Vivado GUI. +
- +
-==== 5.3.2 Scripted simulation ==== +
- +
-The scripted simulation checks that the simulation results match a predefined reference pattern. +
- +
-  * navigate to the root folder of the repository in a terminal +
-  * type ''%%run/run_simulation.sh <name of module (or none for the toplevel simulation)>%%'' +
-  * you will find the output files of the simulation in the folder ''%%output/<Vivado version>/simulation%%''+
- +
-==== 5.3.3 Peripherals simulation models ==== +
- +
-The toplevel simulation includes a Verilog simulation model from Micron, the manufacturer of the AFC’s SDRAM, which allows the simulation of the behavior of the external SDRAM. +
- +
-The SDRAM interface IP needs an initial calibration process which finishes after about 120 us. If the communication to the SDRAM is of interest the simulation time should be chosen to be longer than that. +
- +
-====== 6 Gateware software interface ====== +
- +
-The communication between the gateware inside the FPGA and the software running on the CPU unit takes place via a PCIe driver by Xilinx called XDMA. There is only one PCIe Bar in use in the gateware which maps a coherent memory space of 0x80010000 bytes (= 2,147,549,184 in decimal) to different physical memories on the AFC board.+
  
 The following mapping is applied: The following mapping is applied:
  
- **address**       **size**^**memory type**  ^**description**                                          +            address^            size^memory type  ^description                                
-  0x00000000|   ''%%2 GiB%%''|SDRAM            |on AFC board, for scope data                             + ''%%0x00000000%%''|   ''%%2 kiB%%''|Flip Flops   |inside FPGA, for registers                 
-  0x80000000|  ''%%32 kiB%%''|Block RAM        |inside FPGA, for device information and write registers  | + ''%%0x00004000%%''|  ''%%16 kiB%%''|Block RAM    |inside FPGA, for architecture information 
-  0x80008000|  ''%%32 kiB%%''|Flip Flops       |inside FPGA, for read registers                          |+ ''%%0x00010000%%''|  ''%%64 kiB%%''|Block RAM    |inside FPGA, for observer                  | 
 +|  ''%%0x80000000%%''  ''%%2 GiB%%''|SDRAM        |external, for scope data                   |
  
-**Table 6.1:** Memory mapping 
  
-===== 6.1 Scope memory =====+**Table 5.1:** Memory mapping
  
-There are three scope memory regions of which the one for the corrected ADC data is the largest since it has the highest data rate.+The //architecture information// and the //observer// are documented here:\\ 
 +https://git.gsi.de/BEA_HDL/FPGA_Common#2-common-monitoring-and-control-features
  
-^   **start address**^         **size**^**description**       ^ +==== 5.PCIe Driver ====
-|  ''%%0x00000000%%''   ''%%GiB%%''|corrected ADC data    | +
-|  ''%%0x40000000%%'' ''%%512 MiB%%''|BPM result            | +
-|  ''%%0x60000000%%'' ''%%512 MiB%%''|BPM averaging result  |+
  
-**Table 6.2:** Scopes memory map+Read and write accesses are mapped to virtual file accesses:
  
-==== 6.1.1 Scope 0: corrected ADC data ====+  * ''%%/dev/xdma0_c2h_0%%'' for read accesses 
 +  * ''%%/dev/xdma0_h2c_0%%'' for write accesses
  
-The corrected ADC data is stored in the following format:+=== 5.1.1 Reading from a register ===
  
-^         **address**^    **bits**^**radix**  ^**description**        ^ +Example in C:
-|  ''%%0x00000000%%'' ''%%16%%''|signed     |ADC 0 data (time = 0)  | +
-|  ''%%0x00000002%%'' ''%%16%%''|signed     |ADC 1 data (time = 0)  | +
-|  ''%%0x00000004%%'' ''%%16%%''|signed     |ADC 2 data (time = 0)  | +
-|  ''%%0x00000006%%'' ''%%16%%''|signed     |ADC 3 data (time = 0)  | +
-|  ''%%0x00000008%%'' ''%%16%%''|signed     |ADC 4 data (time = 0)  | +
-|  ''%%0x0000000A%%'' ''%%16%%''|signed     |ADC 5 data (time = 0)  | +
-|  ''%%0x0000000C%%'' ''%%16%%''|signed     |ADC 6 data (time = 0)  | +
-|  ''%%0x0000000E%%'' ''%%16%%''|signed     |ADC 7 data (time = 0)  | +
-|  ''%%0x00000010%%'' ''%%16%%''|signed     |ADC 0 data (time = 1)  | +
-|                   …|           …|…          |…                      |+
  
-**Table 6.3:** Corrected ADC data storage format+<code> 
 +uint32_t address = 0x00000000; 
 +int fd = open("/dev/xdma0_c2h_0", O_RDWR); 
 +lseek(fd, address, SEEK_SET); 
 +uint64_t value; 
 +read(fd, &value, sizeof(uint64_t)); 
 +</code> 
 +=== 5.1.2 Writing to a register ===
  
-The corrected data is the result of two sequential operations on the raw ADC data:+It is important to write the whole register width of 64 bits. If a register has less than 64 bits, the unused MSBs have to be written to any value. 32 bit write accesses will not have any effect.
  
-  - offset correction by adding a correction summand +Example in C:
-  - gain correction by multiplying a correction factor+
  
-The correction summand and the correction factor can be set by individual configuration registers (see [[#621_configuration_registers|chapter 6.2.1]]).+<code> 
 +uint64_t value = 42; 
 +uint32_t address = 0x00000400; 
 +int fd = open("/dev/xdma0_h2c_0", O_RDWR); 
 +lseek(fd, address, SEEK_SET); 
 +write(fd, &value, sizeof(uint64_t)); 
 +</code> 
 +=== 5.1.3 Reading of scope data ===
  
-The corrected ADC data scope memory can hold up to {{:ds:projects:cryring:bpm:gateware:documentation:/math_b49a383e.png?nolink&0x21}} samples. At a sampling frequency of 125 MHz this corresponds to a maximum capture duration of 0.537 seconds.+Example in C:
  
-==== 6.1.2 Scope 1: BPM result ====+<code> 
 +uint32_t address 0x80000000; 
 +int fd open("/dev/xdma0_c2h_0", O_RDWR); 
 +lseek(fd, address, SEEK_SET); 
 +char data[1024]; 
 +read(fd, data, 1024); 
 +</code> 
 +This example reads 1024 bytes of data to an arrayFor bigger data blocks, instead of using an array, you will probably prefer a dynamically allocated memory region.
  
-The BPM result is stored in the following format:+==== 5.2 Scope memory ====
  
-^         **address**^    **bits**^**radix**  ^**description**                                                     ^ +The complete SDRAM is used for the scope memory. The ADC data is stored in the following format:
-|  ''%%0x40000000%%'' ''%%48%%''|unsigned   |time stamp, starting from gate high transition, 125 MHz (time = 0)  | +
-|  ''%%0x40000006%%'' ''%%16%%''|unsigned   |effective linear regression length                                  | +
-|  ''%%0x40000008%%'' ''%%16%%''|signed     |BPM 0 result (time = 0)                                             | +
-|  ''%%0x4000000A%%'' ''%%16%%''|unsigned   |BPM 0 variance * N (time = 0)                                       | +
-|  ''%%0x4000000C%%'' ''%%16%%''|unsigned   |BPM 0 intensity (time = 0)                                          | +
-|  ''%%0x4000000E%%'' ''%%16%%''|signed     |BPM 1 result (time = 0)                                             | +
-|  ''%%0x40000010%%'' ''%%16%%''|unsigned   |BPM 1 variance * N (time = 0)                                       | +
-|  ''%%0x40000012%%'' ''%%16%%''|unsigned   |BPM 1 intensity (time = 0)                                          | +
-|  ''%%0x40000014%%'' ''%%16%%''|signed     |BPM 2 result (time = 0)                                             | +
-|  ''%%0x40000016%%'' ''%%16%%''|unsigned   |BPM 2 variance * N (time = 0)                                       | +
-|  ''%%0x40000018%%'' ''%%16%%''|unsigned   |BPM 2 intensity (time = 0)                                          | +
-|  ''%%0x4000001A%%'' ''%%16%%''|signed     |BPM 3 result (time = 0)                                             | +
-|  ''%%0x4000001C%%'' ''%%16%%''|unsigned   |BPM 3 variance * N (time = 0)                                       | +
-|  ''%%0x4000001E%%'' ''%%16%%''|unsigned   |BPM 3 intensity (time = 0)                                          | +
-|  ''%%0x40000020%%'' ''%%48%%''|unsigned   |time stamp, starting from gate high transition, 125 MHz (time = 1)  | +
-|                   …|           …|…          |…                                                                   |+
  
-**Table 6.4:** BPM result storage format+^             address^         bits^radix     ^description                          ^ 
 +|  ''%%0x80000000%%''  ''%%16%%''|signed    |ADC 0 data (time = 0)                | 
 +|  ''%%0x80000002%%''  ''%%16%%''|signed    |ADC 1 data (time = 0)                | 
 +|                   …|            …|…         |…                                    | 
 +|  ''%%0x8000004E%%''  ''%%16%%''|signed    |ADC 39 data (time = 0)               | 
 +|  ''%%0x80000050%%''  ''%%64%%''|unsigned  |timestamp (time = 0)                 | 
 +|  ''%%0x80000058%%''   ''%%8%%''|none      |state of the MLVDS lines (time = 0)  | 
 +|  ''%%0x80000059%%'' ''%%312%%''|none      |unused                               | 
 +|  ''%%0x80000080%%''  ''%%16%%''|signed    |ADC 0 data (time = 1)                | 
 +|                   …|            …|…         |…                                    |
  
-The BPM result scope memory can hold up to {{:ds:projects:cryring:bpm:gateware:documentation:/math_6b2062f3.png?nolink&0x21}} samples. At a sampling frequency of 125 MHz and with a linear regression length of e.g. 1024 this corresponds to a maximum capture duration of 2:17 minutes. 
  
-=== BPM {0 - 3} result ===+**Table 5.2:** ADC data storage format
  
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}} represents the relative beam position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_6818d66b.png?nolink&0x25}}.+The scope is a free running ring buffer. The write pointer is incremented with each incoming ADC sample vector by the vector size of 128 bytes.
  
-=== BPM {0 - 3variance * N ===+The scope memory can hold up to {{:ds:projects:unimon:gateware:/math_6b2062f3.png?nolink&0x21}} samples. At the maximum sampling frequency of 5 MHz this corresponds to a maximum capture duration of 3.36 seconds.
  
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_4f4440e7.png?nolink&0x21}} represents the variance of the corresponding BPM result multiplied with the linear regression length.+==== 5.3 Register map ====
  
-The scaling with the linear regression length guarantees enough LSBs to evaluate. The variance itself quantized with 16 bits would otherwise often result in zero. +=== 5.3.1 Status registers ===
- +
-=== BPM {0 - 3} intensity === +
- +
-The intensity of the beam. A value of {{:ds:projects:cryring:bpm:gateware:documentation:/math_90f0d1f4.png?nolink&0x22}} corresponds to the maximum achievable intensity at an alternating pattern of maximum and minimum ADC samples on both inputs. +
- +
-==== 6.1.3 Scope 2: BPM averaging result ==== +
- +
-The BPM averaging result is stored in the following format: +
- +
-^         **address**^    **bits**^**radix**  ^**description**                                                     ^ +
-|  ''%%0x60000000%%'' ''%%48%%''|unsigned   |time stamp, starting from gate high transition, 125 MHz (time = 0)  | +
-|  ''%%0x60000006%%'' ''%%16%%''|unsigned   |average linear regression length                                    | +
-|  ''%%0x60000008%%'' ''%%16%%''|signed     |BPM 0 averaging result (time = 0)                                   | +
-|  ''%%0x6000000A%%'' ''%%16%%''|unsigned   |BPM 0 averaging variance * N * N_avg (time = 0)                     | +
-|  ''%%0x6000000C%%'' ''%%16%%''|unsigned   |BPM 0 averaging intensity (time = 0)                                | +
-|  ''%%0x6000000E%%'' ''%%16%%''|signed     |BPM 1 averaging result (time = 0)                                   | +
-|  ''%%0x60000010%%'' ''%%16%%''|unsigned   |BPM 1 averaging variance * N * N_avg (time = 0)                     | +
-|  ''%%0x60000012%%'' ''%%16%%''|unsigned   |BPM 1 averaging intensity (time = 0)                                | +
-|  ''%%0x60000014%%'' ''%%16%%''|signed     |BPM 2 averaging result (time = 0)                                   | +
-|  ''%%0x60000016%%'' ''%%16%%''|unsigned   |BPM 2 averaging variance * N * N_avg (time = 0)                     | +
-|  ''%%0x60000018%%'' ''%%16%%''|unsigned   |BPM 2 averaging intensity (time = 0)                                | +
-|  ''%%0x6000001A%%'' ''%%16%%''|signed     |BPM 3 averaging result (time = 0)                                   | +
-|  ''%%0x6000001C%%'' ''%%16%%''|unsigned   |BPM 3 averaging variance * N * N_avg (time = 0)                     | +
-|  ''%%0x6000001E%%'' ''%%16%%''|unsigned   |BPM 3 averaging intensity (time = 0)                                | +
-|  ''%%0x60000020%%'' ''%%48%%''|unsigned   |time stamp, starting from gate high transition, 125 MHz (time = 1)  | +
-|                   …|           …|…          |…                                                                   | +
- +
-**Table 6.5:** BPM averaging result storage format +
- +
-The BPM averaging result scope memory can hold up to {{:ds:projects:cryring:bpm:gateware:documentation:/math_6b2062f3.png?nolink&0x21}} samples. At a sampling frequency of 125 MHz, with a linear regression length of e.g. 1024 and with an averaging length of e.g. 1024 this corresponds to a maximum capture duration of 39.1 hours. +
- +
-=== BPM {0 - 3} averaging result === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}} represents the relative beam position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_6818d66b.png?nolink&0x25}}. +
- +
-=== BPM {0 - 3} averaging variance * N * N_avg === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_4f4440e7.png?nolink&0x21}} represents the variance of the corresponding BPM averaging result multiplied with the average linear regression length and the averaging length. +
- +
-The scaling with the average linear regression length times the averaging length guarantees enough LSBs to evaluate. The variance itself quantized with 16 bits would otherwise nearly always result in zero. +
- +
-=== BPM {0 - 3} averaging intensity === +
- +
-The average intensity of the beam. A value of {{:ds:projects:cryring:bpm:gateware:documentation:/math_90f0d1f4.png?nolink&0x22}} corresponds to the maximum achievable intensity at an alternating pattern of maximum and minimum ADC samples on both inputs. +
- +
-===== 6.2 Register map ===== +
- +
-==== 6.2.1 Configuration registers ==== +
- +
-The following registers can be written by software: +
- +
-^   **index**^         **address**^    **bits**^**radix**  ^**description**                      ^  **default value**^ +
-|   ''%%0%%'' ''%%0x80007000%%'' ''%%16%%''|signed     |ADC 0 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%1%%'' ''%%0x80007020%%'' ''%%16%%''|signed     |ADC 1 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%2%%'' ''%%0x80007040%%'' ''%%16%%''|signed     |ADC 2 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%3%%'' ''%%0x80007060%%'' ''%%16%%''|signed     |ADC 3 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%4%%'' ''%%0x80007080%%'' ''%%16%%''|signed     |ADC 4 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%5%%'' ''%%0x800070A0%%'' ''%%16%%''|signed     |ADC 5 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%6%%'' ''%%0x800070C0%%'' ''%%16%%''|signed     |ADC 6 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%7%%'' ''%%0x800070E0%%'' ''%%16%%''|signed     |ADC 7 offset correction summand      |     ''%%0x0000%%''+
-|   ''%%8%%'' ''%%0x80007100%%'' ''%%16%%''|unsigned   |ADC 0 gain correction factor             ''%%0x8000%%''+
-|   ''%%9%%'' ''%%0x80007120%%'' ''%%16%%''|unsigned   |ADC 1 gain correction factor             ''%%0x8000%%''+
-|  ''%%10%%'' ''%%0x80007140%%'' ''%%16%%''|unsigned   |ADC 2 gain correction factor             ''%%0x8000%%''+
-|  ''%%11%%'' ''%%0x80007160%%'' ''%%16%%''|unsigned   |ADC 3 gain correction factor             ''%%0x8000%%''+
-|  ''%%12%%'' ''%%0x80007180%%'' ''%%16%%''|unsigned   |ADC 4 gain correction factor             ''%%0x8000%%''+
-|  ''%%13%%'' ''%%0x800071A0%%'' ''%%16%%''|unsigned   |ADC 5 gain correction factor             ''%%0x8000%%''+
-|  ''%%14%%'' ''%%0x800071C0%%'' ''%%16%%''|unsigned   |ADC 6 gain correction factor             ''%%0x8000%%''+
-|  ''%%15%%'' ''%%0x800071E0%%'' ''%%16%%''|unsigned   |ADC 7 gain correction factor             ''%%0x8000%%''+
-|  ''%%16%%'' ''%%0x80007200%%'' ''%%16%%''|unsigned   |BPM 0 capacitance correction factor  |     ''%%0x8000%%''+
-|  ''%%17%%'' ''%%0x80007220%%'' ''%%16%%''|unsigned   |BPM 1 capacitance correction factor  |     ''%%0x8000%%''+
-|  ''%%18%%'' ''%%0x80007240%%'' ''%%16%%''|unsigned   |BPM 2 capacitance correction factor  |     ''%%0x8000%%''+
-|  ''%%19%%'' ''%%0x80007260%%'' ''%%16%%''|unsigned   |BPM 3 capacitance correction factor  |     ''%%0x8000%%''+
-|  ''%%20%%'' ''%%0x80007280%%'' ''%%12%%''|unsigned   |BPM linear regression length - 1          ''%%0x3FF%%''+
-|  ''%%21%%'' ''%%0x800072A0%%''  ''%%5%%''|unsigned   |log2 of BPM averaging length               ''%%0x0A%%''+
-|  ''%%22%%'' ''%%0x800072C0%%''  ''%%4%%''|unsigned   |gate signal input select                    ''%%0x0%%''+
-|  ''%%23%%'' ''%%0x800072E0%%''  ''%%4%%''|unsigned   |RF signal input select                      ''%%0x8%%''+
-|  ''%%24%%'' ''%%0x80007300%%''  ''%%4%%''|unsigned   |intensity normalization exponent            ''%%0x0%%''+
-|  ''%%31%%'' ''%%0x800073E0%%''  ''%%1%%''|binary     |partial reset                        |          ''%%0%%''+
-|  ''%%32%%'' ''%%0x80007400%%'' ''%%26%%''|unsigned   |scope 0 capture length - 1            ''%%0x0000FFF%%''+
-|  ''%%33%%'' ''%%0x80007420%%''  ''%%2%%''|unsigned   |scope 0 trigger mode                        ''%%0x2%%''+
-|  ''%%34%%'' ''%%0x80007440%%''  ''%%1%%''|binary     |scope 0 arm trigger                  |          ''%%0%%''+
-|  ''%%40%%'' ''%%0x80007500%%'' ''%%24%%''|unsigned   |scope 1 capture length - 1             ''%%0x000FFF%%''+
-|  ''%%41%%'' ''%%0x80007520%%''  ''%%2%%''|unsigned   |scope 1 trigger mode                        ''%%0x1%%''+
-|  ''%%42%%'' ''%%0x80007540%%''  ''%%1%%''|binary     |scope 1 arm trigger                  |          ''%%0%%''+
-|  ''%%43%%'' ''%%0x80007560%%''  ''%%1%%''|binary     |scope 1 capture mode                          ''%%0%%''+
-|  ''%%48%%'' ''%%0x80007600%%'' ''%%24%%''|unsigned   |scope 2 capture length - 1             ''%%0x000FFF%%''+
-|  ''%%49%%'' ''%%0x80007620%%''  ''%%2%%''|unsigned   |scope 2 trigger mode                        ''%%0x1%%''+
-|  ''%%50%%'' ''%%0x80007640%%''  ''%%1%%''|binary     |scope 2 arm trigger                  |          ''%%0%%''+
-|  ''%%51%%'' ''%%0x80007660%%''  ''%%1%%''|binary     |scope 2 capture mode                          ''%%0%%''+
- +
-**Table 6.6:** List of configuration registers +
- +
-=== 0 - 7: ADC {0 - 7} offset correction summand === +
- +
-Correction summand for a possible offset deviation of the ADC. The offset correction precedes the gain correction. +
- +
-=== 8 - 15: ADC {0 - 7} gain correction factor === +
- +
-Correction factor for a possible gain deviation of the ADC. The default value 0x8000 corresponds to a multiplication by 1. The possible correction range is {{:ds:projects:cryring:bpm:gateware:documentation:/math_69644564.png?nolink&0x25}}. +
- +
-=== 16 - 19: BPM {0 - 3} capacitance correction factor === +
- +
-The capacitances of the two corresponding capacitor plates of a single BPM can differ. Data 0 is fed unchanged into the BPM algorithm, while data 1 is multiplied by a correction factor. The default value 0x8000 corresponds to a multiplication by 1. The possible correction range is {{:ds:projects:cryring:bpm:gateware:documentation:/math_69644564.png?nolink&0x25}}. +
- +
-=== 20: BPM linear regression length - 1 === +
- +
-Number of samples over which the linear regression is calculated if no external RF pulse signal is present. This value is valid for all four BPMs. If an external RF pulse signal is present, the result of the linear regression will be output and a new calculation will be started on every rising edge of the RF pulse signal. For this to work, this register has to be set to a value that is longer than the interval between the RF pulses. +
- +
-Allowed values: 0x002 - 0xFFF +
- +
-The lower limit is determined by the throughput of the divider IP core of 1 in 3 clock cycles that is used for the final division of the BPM algorithm. +
- +
-=== 21: Log2 of BPM averaging length === +
- +
-Dual logarithm of the number of linear regression results over which the averaging is calculated. This value is valid for all four BPMs. +
- +
-Allowed range: 0 .. 20. Higher values will be set to the maximum allowed value. This corresponds to an averaging length of 1, 2, 4, … , 1,048,576. +
- +
-=== 22: Gate signal input select === +
- +
-^  value^input                              ^ +
-|  0 - 7|MLVDS line 0 - 7 on the backplane +
-|      8|FMC 0 //TRIG// input               | +
-|      9|FMC 1 //TRIG// input               | +
- +
-The gate signal input can be switched between one of the eight MLVDS lines on the backplane and the two MMCX connectors labeled //TRIG// on the FMC front panels. +
- +
-=== 23: RF signal input select === +
- +
-^  value^input                              ^ +
-|  0 - 7|MLVDS line 0 - 7 on the backplane +
-|      8|FMC 0 //TRIG// input               | +
-|      9|FMC 1 //TRIG// input               | +
- +
-The RF signal input can be switched between one of the eight MLVDS lines on the backplane and the two MMCX connectors labeled //TRIG// on the FMC front panels. +
- +
-=== 24: Intensity normalization exponent === +
- +
-The intensity calculation in the BPM algorithm is normalized to ensure that no saturation can occur. This leads to small results during normal operation which are susceptible to quantization noise. By means of this register the normalization can be changed to allow larger results. +
- +
-With each increment of this exponent by one, the result will double. Keep in mind that the result can saturate when setting this value to larger than zero. +
- +
-=== 31: Partial reset === +
- +
-Writing a 1 to this register triggers a partial reset on the gateware, which affects the scopes and the BPM calculation modules. The PCIe interface, the SDRAM interface, the AXI infrastructure and the register bank will not be resetted. +
- +
-The reset will be automatically lifted so that the register does not have to be written to 0 after initiating a reset. +
- +
-=== 32, 40, 48: Scope {0, 1, 2} capture length - 1 === +
- +
-The number of samples minus one that are stored after a scope has been triggered. Each sample consists of 16 bytes. +
- +
-Scope 0 can only handle even numbers of samples. Uneven numbers will be automatically handled as the next higher even number. For scopes 1 and 2, also uneven numbers are allowed. +
- +
-=== 33, 41, 49: Scope {0, 1, 2} trigger mode === +
- +
-^  value^trigger mode                                                                               ^ +
-|      0|trigger on rising edge of gate signal                                                      | +
-|      1|trigger on high state of gate signal                                                       | +
-|   2, 3|trigger instantly after the trigger is armed, independent of the state of the gate signal +
- +
-=== 34, 42, 50: Scope {0, 1, 2} arm trigger === +
- +
-Writing a 1 to this register will arm the trigger once. The register does not have to be reset to 0 before the next arm trigger, just write another 1 to it. If the corresponding register ’continuous trigger’ is set to 1, writing to this register does not have any effect. +
- +
-When in ’waiting for trigger’ state (see status register ’capture status’ in [[#622_status_registers|chapter 6.2.2]]), writing a 0 to this register will cancel the arming of the trigger and the capture status will change to ’done’. +
- +
-=== 43, 51: Scope {1, 2} capture mode === +
- +
-^  value^capture mode                                                                 ^ +
-|      0|capture until the number of samples defined by register {40, 48} are stored +
-|      1|the same, but cancel capturing when the gate signal goes low                 | +
- +
-A capture mode register is only available for scopes 1 and 2. Scope 0 (for corrected ADC data) always operates in capture mode 0. +
- +
-==== 6.2.2 Status registers ====+
  
 The following status registers can be read by software: The following status registers can be read by software:
  
-   **index**        **address**   **bits**^**radix**  ^**description**                              +       index^             address^        bits^radix     ^description                         
-|    ''%%0%%'' ''%%0x80008000%%'' ''%%16%%''|signed     |latest BPM result                          +|    ''%%0%%'' ''%%0x00000000%%'' ''%%16%%''|signed    |latest ADC data                   
-|    ''%%1%%'' ''%%0x80008020%%'' ''%%16%%''|signed     |latest BPM 1 result                          | +|    ''%%1%%'' ''%%0x00000008%%'' ''%%16%%''|signed    |latest ADC data                   
-   ''%%2%%'' ''%%0x80008040%%'' ''%%16%%''|signed     |latest BPM 2 result                          | +           …                  …          …|…         |…                                   
-|    ''%%3%%'' ''%%0x80008060%%'' ''%%16%%''|signed     |latest BPM 3 result                          | +|   ''%%39%%'' ''%%0x00000138%%'' ''%%16%%''|signed    |latest ADC 39 data                  
-|    ''%%4%%'' ''%%0x80008080%%'' ''%%16%%''|unsigned   |latest BPM 0 variance * N                    | +|   ''%%48%%'' ''%%0x00000180%%'' ''%%32%%''|unsigned  |scope next write address            
-|    ''%%5%%'' ''%%0x800080A0%%'' ''%%16%%''|unsigned   |latest BPM variance * N                    + ''%%111%%'' ''%%0x00000788%%''  ''%%1%%''|binary    |SDRAM initial calibration complete  | 
-   ''%%6%%'' ''%%0x800080C0%%'' ''%%16%%''|unsigned   |latest BPM 2 variance * N                    +|  ''%%124%%'' ''%%0x000003E0%%'' ''%%32%%''|unsigned  |build timestamp                     
-   ''%%7%%'' ''%%0x800080E0%%'' ''%%16%%''|unsigned   |latest BPM 3 variance * N                    | +|  ''%%125%%'' ''%%0x000003E8%%'' ''%%57%%''|unsigned  |FPGA serial number                  
-|    ''%%8%%'' ''%%0x80008100%%'' ''%%16%%''|unsigned   |latest BPM 0 intensity                       | +|  ''%%126%%'' ''%%0x000003F0%%'' ''%%64%%''|unsigned  |module ID                           
-   ''%%9%%'' ''%%0x80008120%%'' ''%%16%%''|unsigned   |latest BPM 1 intensity                       +|  ''%%127%%'' ''%%0x000003F8%%'' ''%%64%%''|unsigned  |magic number                        |
-|   ''%%10%%'' ''%%0x80008140%%'' ''%%16%%''|unsigned   |latest BPM 2 intensity                       | +
-|   ''%%11%%'' ''%%0x80008160%%'' ''%%16%%''|unsigned   |latest BPM 3 intensity                       | +
-|   ''%%12%%'' ''%%0x80008180%%'' ''%%12%%''|unsigned   |effective linear regression length           | +
-|   ''%%13%%'' ''%%0x800081A0%%''|  ''%%48%%''|unsigned   |time from gate high transition               | +
-|   ''%%16%%'' ''%%0x80008200%%''|  ''%%16%%''|signed     |latest BPM 0 averaging result                | +
-|   ''%%17%%'' ''%%0x80008220%%'' ''%%16%%''|signed     |latest BPM 1 averaging result                | +
-|   ''%%18%%'' ''%%0x80008240%%'' ''%%16%%''|signed     |latest BPM 2 averaging result                | +
-|   ''%%19%%'' ''%%0x80008260%%'' ''%%16%%''|signed     |latest BPM 3 averaging result                | +
-|   ''%%20%%'' ''%%0x80008280%%'' ''%%16%%''|unsigned   |latest BPM 0 averaging variance * N * N_avg  | +
-|   ''%%21%%'' ''%%0x800082A0%%'' ''%%16%%''|unsigned   |latest BPM 1 averaging variance * N * N_avg  | +
-|   ''%%22%%'' ''%%0x800082C0%%'' ''%%16%%''|unsigned   |latest BPM 2 averaging variance * N * N_avg  | +
-|   ''%%23%%'' ''%%0x800082E0%%'' ''%%16%%''|unsigned   |latest BPM 3 averaging variance * N * N_avg  | +
-|   ''%%24%%'' ''%%0x80008300%%'' ''%%16%%''|unsigned   |latest BPM 0 averaging intensity             | +
-|   ''%%25%%'' ''%%0x80008320%%'' ''%%16%%''|unsigned   |latest BPM 1 averaging intensity             | +
-|   ''%%26%%'' ''%%0x80008340%%'' ''%%16%%''|unsigned   |latest BPM 2 averaging intensity             | +
-|   ''%%27%%'' ''%%0x80008360%%'' ''%%16%%''|unsigned   |latest BPM 3 averaging intensity             | +
-|   ''%%28%%'' ''%%0x80008380%%'' ''%%12%%''|unsigned   |average effective linear regression length   | +
-|   ''%%32%%'' ''%%0x80008400%%''  ''%%2%%''|unsigned   |scope 0 capture status                       | +
-|   ''%%33%%'' ''%%0x80008420%%'' ''%%32%%''|unsigned   |scope next write address                   +
-  ''%%40%%'' ''%%0x80008500%%''  ''%%2%%''|unsigned   |scope capture status                       | +
-|   ''%%41%%'' ''%%0x80008520%%''|  ''%%32%%''|unsigned   |scope 1 next write address                   +
-|   ''%%48%%''|  ''%%0x80008600%%''  ''%%2%%''|unsigned   |scope 2 capture status                       | +
-|   ''%%49%%'' ''%%0x80008620%%'' ''%%32%%''|unsigned   |scope 2 next write address                   +
-|  ''%%124%%'' ''%%0x80008F80%%'' ''%%32%%''|unsigned   |magic number                                 +
-|  ''%%125%%'' ''%%0x80008FA0%%'' ''%%32%%''|unsigned   |module ID                                    +
-|  ''%%126%%'' ''%%0x80008FC0%%'' ''%%32%%''|unsigned   |build timestamp                              | +
- ''%%127%%'' ''%%0x80008FE0%%'' ''%%57%%''|unsigned   |FPGA serial number                           | +
- +
-**Table 6.7:** List of status registers +
- +
-=== 0 - 3: latest BPM {0 - 3} result === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}} represents the relative beam position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_6818d66b.png?nolink&0x25}}. +
- +
-=== 4 - 7: latest BPM {0 - 3} variance * N === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_4f4440e7.png?nolink&0x21}} represents the variance of the corresponding BPM result multiplied with the linear regression length. +
- +
-The scaling with the linear regression length guarantees enough LSBs to evaluate. The variance itself quantized with 16 bits would otherwise often result in zero. +
- +
-=== 8 - 11: latest BPM {0 - 3} intensity === +
- +
-The intensity of the beam. A value of {{:ds:projects:cryring:bpm:gateware:documentation:/math_90f0d1f4.png?nolink&0x22}} corresponds to the maximum achievable intensity at an alternating pattern of maximum and minimum ADC samples on both inputs. +
- +
-=== 12: effective linear regression length === +
- +
-The effective linear regression length is determined by the nominal value of the linear regression length configuration register and the frequency of the RF pulses. If no RF pulses are present, this register should hold the value of the linear regression length configuration register. +
- +
-=== 13: time from gate high transition === +
- +
-Counter value, driven by the 125 MHz main processing clock, starting from the high transition of the gate input signal. +
- +
-=== 16 - 19: latest BPM {0 - 3} averaging result === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}} represents the relative beam position in the range {{:ds:projects:cryring:bpm:gateware:documentation:/math_6818d66b.png?nolink&0x25}}. Due to the averaging there should be less noise on this value than on the BPM result. +
- +
-=== 20 - 23: latest BPM {0 - 3} averaging variance * N * N_avg === +
- +
-This value divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_4f4440e7.png?nolink&0x21}} represents the variance of the corresponding BPM averaging result multiplied with the average linear regression length and the averaging length. +
- +
-The scaling with the average linear regression length times the averaging length guarantees enough LSBs to evaluate. The variance itself quantized with 16 bits would otherwise nearly always result in zero. +
- +
-=== 24 - 27: latest BPM {0 - 3} averaging intensity === +
- +
-The intensity of the beam. A value of {{:ds:projects:cryring:bpm:gateware:documentation:/math_90f0d1f4.png?nolink&0x22}} corresponds to the maximum achievable intensity at an alternating pattern of maximum and minimum ADC samples on both inputs. +
- +
-=== 28: average effective linear regression length === +
- +
-The average of the effective linear regression lengths of the BPM. +
- +
-=== 32, 40, 48: Scope {0, 1, 2} capture status ===+
  
-^  value^capture status       ^ 
-|      0|idle                 | 
-|      1|waiting for trigger  | 
-|      2|capturing            | 
-|      3|done                 | 
  
-The value 0 is only present before starting the trigger for the first timeAfter that, the effective idle state is 3.+**Table 5.3:** List of status registers
  
-=== 33, 41, 49Scope {0, 1, 2next write address ===+== 0 - 39latest ADC {0 - 39data ==
  
-Address where the next data sample will be stored during the scope’s capturing process.+This register holds the latest ADC data sample.
  
-=== 124magic number ===+== 48Scope next write address ==
  
-The magic number can be used to identify the position of the following three registers in the register bank. This register contains the value ''%%0xDEADC0DE%%''.+Address where the next data sample will be stored during the scope’s capturing process. The recently stored ADC data can be found below this address, or - in case of a ringbuffer wraparound - also below the end of the memory region.
  
-=== 125module ID ===+== 111SDRAM initial calibration complete ==
  
-The module ID can be used to identify the type of the current bitstream. The module ID of the Cryring BPM 250 MHz ADC gateware is ''%%0x10000001%%''.+The communication to the SDRAM is controlled by an IP core by Xilinx which performs a timing calibration at start up. The value of this register will be ''%%1%%'' after completion of the initial calibration. If this registers reads ''%%0%%'', this might indicate that the SDRAM is damaged.
  
-=== 126: build timestamp ===+== 124: build timestamp ==
  
-Time when the bitstream was created. This information can be used to identify the gateware version (together with the Git commit information documented in [[#723_gateware_information|chapter 7.2.3]]).+Time when the bitstream was created. This information can be used to identify the gateware version (together with the Git commit information documented in https://git.gsi.de/BEA_HDL/FPGA_Common#122-gateware-information).
  
 Format: Format:
  
-    bits^information                          ^ + bits 31 - 27   bits 26 - 23            bits 22 17            bits 16 12  ^  bits 11 - 6  ^  bits 5 0  ^ 
-|    0 5|seconds                              | +     day           month      |  year (last two decimal digits     hours         minutes      seconds    |
-|   - 11|minutes                              | +
- 12 16|hours                                | +
-|  17 - 22|last two decimal digits of the year  | +
- 23 - 26|month                                | +
-|  27 - 31|day                                  |+
  
-=== 127: FPGA serial number ===+== 125: FPGA serial number ==
  
-The XDMA PCIe driver by Xilinx numbers the devices randomly and is not able to identify the slot number of an AFC board. This register holds the FPGA’s unique serial number and can be used to identify an AFC board.+The XDMA PCIe driver by Xilinx numbers the devices randomly and is not able to identify the slot number of an AMC board. This register holds the FPGA’s unique serial number and can be used to identify an AMC board.
  
-===== 6.3 Capturing procedure =====+== 126: module ID ==
  
-==== 6.3.1 Known number of samples ====+The module ID can be used to identify the type of the current bitstream.\\ 
 +The module ID of the UniMon gateware is ''%%0x0001010300010002%%''.
  
-A typical procedure for capturing a predefinable number of samples starting from the rising edge of the gate signal is the following:+The fields are defined as follows:
  
-  * write the number of samples minus 1 to the configuration register ’capture length 1’ +^       bits 63 56             bits 55 - 48           bits 47 - 40      ^     bits 39 - 32      ^  bits 31 - 16  ^  bits 15 - 0  ^ 
-  * write a 0 to the configuration register named ’trigger mode’ + minor gateware version  |  major gateware version  |  minor board version  |  major board version  |  developer ID  |  project ID   |
-  * write a (= default) to the configuration register named ’capture mode’ +
-  * write a 1 to the configuration register named ’arm trigger’ +
-  * you can check the status register named ’capture status’ for the progress: 1: rising edge of gate signal not yet detected, 2: capturing is ongoing, 3: capturing completed +
-  * you can check the current write address by polling the status register named ’next write address’+
  
-==== 6.3.2 Unknown number of samples ====+Here is an incomplete list of project IDs:
  
-BPM results are only calculated while the gate signal is high. If you want to capture a complete high period of e.g. BPM average samples, the total number of samples is unknown. Proceed as follows:+^      project ID^project name          ^ 
 +|  ''%%0x0001%%''|Cryring BPM           | 
 +|  ''%%0x0002%%''|UniMon                | 
 +|  ''%%0x0003%%''|Rate Divider          | 
 +|  ''%%0x0004%%''|BLoFELD               | 
 +|  ''%%0x0005%%''|Resonant Transformer 
 +|  ''%%0x8001%%''|Red Pitaya            |
  
-  * write the maximum value 0x1FFFFFF to the configuration register named ’capture length - 1’ +== 127: magic number ==
-  * write a 0 to the configuration register named ’trigger mode’ +
-  * write a 1 to the configuration register named ’capture mode’ +
-  * write a 1 to the configuration register named ’arm trigger’ +
-  * you can check the status register ’capture status’ as above +
-  * the value of the status register named ’next write address’ will be static after completion and indicates how many samples have been captured+
  
-====== 7 Extended gateware software interface ======+The magic number can be used to determine if the gateware uses the expected register format.\\ 
 +The value of this register is the same for all module IDs: ''%%0xBADEAFFEDEADC0DE%%''.
  
-Besides the interface documented in [[#6_gateware_software_interface|chapter 6]] which is meant for productive use, there is an extended interface for development and debugging purposesThe extended interface is also present in the bitstream by default.+=== 5.3.2 Configuration registers ===
  
-While the productive interface is intended to be kept as downward compatible as possible, the extended interface may be subject to major changes during the development process.+The following registers can be written by software:
  
-===== 7.Extended register map =====+^        index^             address^        bits^radix     ^description                               default value^ 
 +|    ''%%0%%'' ''%%0x00000400%%'' ''%%18%%''|unsigned  |ADC conversion pulse length             ''%%0x00000%%''
 +|    ''%%1%%'' ''%%0x00000408%%''  ''%%5%%''|unsigned  |MLVDS calibration delay                    ''%%0x00%%''
 +|   ''%%16%%'' ''%%0x00000480%%'' ''%%40%%''|none      |FMC0 ADC gain                      ''%%0x0000000000%%''
 +|   ''%%17%%'' ''%%0x00000488%%'' ''%%40%%''|none      |FMC0 ADC input mux select p        ''%%0x0000000000%%''
 +|   ''%%18%%'' ''%%0x00000490%%'' ''%%40%%''|none      |FMC0 ADC input mux select n        ''%%0x0000000000%%''
 +|   ''%%24%%'' ''%%0x000004C0%%'' ''%%40%%''|none      |FMC1 ADC gain                      ''%%0x0000000000%%''
 +|   ''%%25%%'' ''%%0x000004C8%%'' ''%%40%%''|none      |FMC1 ADC input mux select p        ''%%0x0000000000%%''
 +|   ''%%26%%'' ''%%0x000004D0%%'' ''%%40%%''|none      |FMC1 ADC input mux select n        ''%%0x0000000000%%''
 +|   ''%%32%%'' ''%%0x00000500%%'' ''%%16%%''|signed    |ADC 0 offset correction summand          ''%%0x0000%%''
 +|            …|                   …|           …|…         |…                                                     …| 
 +|   ''%%71%%'' ''%%0x00000638%%'' ''%%16%%''|signed    |ADC 39 offset correction summand  |        ''%%0x0000%%''
 +|   ''%%72%%'' ''%%0x00000640%%'' ''%%16%%''|unsigned  |ADC 0 gain correction factor      |        ''%%0x8000%%''
 +|            …|                   …|           …|…         |…                                                     …| 
 +|  ''%%111%%'' ''%%0x00000778%%'' ''%%16%%''|unsigned  |ADC 39 gain correction factor            ''%%0x8000%%''
 +|  ''%%127%%'' ''%%0x000007F8%%''  ''%%1%%''|binary    |reset                                         ''%%0%%''|
  
-==== 7.1.1 Additional configuration registers ==== 
  
-The following additional registers can be written by software:+**Table 5.4:** List of configuration registers
  
-^   **index**^         **address**^   **bits**^**radix**  ^**description**              **default value**^ +== 0ADC conversion pulse length ==
-|  ''%%39%%'' ''%%0x800074E0%%'' ''%%1%%''|binary     |scope 0 continuous trigger  |          ''%%0%%''+
-|  ''%%47%%'' ''%%0x800075E0%%'' ''%%1%%''|binary     |scope 1 continuous trigger  |          ''%%0%%''+
-|  ''%%55%%'' ''%%0x800076E0%%'' ''%%1%%''|binary     |scope 2 continuous trigger  |          ''%%0%%''+
-|  ''%%64%%'' ''%%0x80007800%%'' ''%%2%%''|unsigned   |FMC 0 status LED select            ''%%0x0%%''+
-|  ''%%65%%'' ''%%0x80007820%%'' ''%%3%%''|unsigned   |FMC 0 status LED value      |        ''%%0x7%%''+
-|  ''%%66%%'' ''%%0x80007840%%'' ''%%5%%''|unsigned   |FMC 0 SPI chip select             ''%%0x0F%%''+
-|  ''%%67%%'' ''%%0x80007860%%'' ''%%1%%''|binary     |FMC 0 SPI read/write        |          ''%%0%%''+
-|  ''%%68%%'' ''%%0x80007880%%'' ''%%8%%''|unsigned   |FMC 0 SPI address                 ''%%0x00%%''+
-|  ''%%69%%'' ''%%0x800078A0%%'' ''%%8%%''|unsigned   |FMC 0 SPI write data        |       ''%%0x00%%''+
-|  ''%%70%%'' ''%%0x800078C0%%'' ''%%1%%''|binary     |FMC 0 SPI trigger                    ''%%0%%''+
-|  ''%%71%%'' ''%%0x800078E0%%'' ''%%1%%''|binary     |FMC 0 ADC resetn            |          ''%%1%%''+
-|  ''%%72%%'' ''%%0x80007900%%'' ''%%1%%''|binary     |FMC 0 I2C read/write        |          ''%%0%%''+
-|  ''%%73%%'' ''%%0x80007920%%'' ''%%7%%''|unsigned   |FMC 0 I2C device address    |       ''%%0x49%%''+
-|  ''%%74%%'' ''%%0x80007940%%'' ''%%8%%''|unsigned   |FMC 0 I2C register address  |       ''%%0x00%%''+
-|  ''%%75%%'' ''%%0x80007960%%'' ''%%8%%''|unsigned   |FMC 0 I2C write data        |       ''%%0x00%%''+
-|  ''%%76%%'' ''%%0x80007980%%'' ''%%1%%''|binary     |FMC 0 I2C trigger                    ''%%0%%''+
-|  ''%%77%%'' ''%%0x800079A0%%'' ''%%1%%''|binary     |FMC 0 PLL resetn            |          ''%%1%%''+
-|  ''%%78%%'' ''%%0x800079C0%%'' ''%%1%%''|binary     |FMC 0 clock switch select            ''%%1%%''+
-|  ''%%79%%'' ''%%0x800079E0%%'' ''%%1%%''|binary     |FMC 0 VCXO output enable    |          ''%%1%%''+
-|  ''%%80%%'' ''%%0x80007A00%%'' ''%%2%%''|unsigned   |FMC 1 status LED select            ''%%0x0%%''+
-|  ''%%81%%'' ''%%0x80007A20%%'' ''%%3%%''|unsigned   |FMC 1 status LED value      |        ''%%0x7%%''+
-|  ''%%82%%'' ''%%0x80007A40%%'' ''%%5%%''|unsigned   |FMC 1 SPI chip selec        |       ''%%0x0F%%''+
-|  ''%%83%%'' ''%%0x80007A60%%'' ''%%1%%''|binary     |FMC 1 SPI read/write        |          ''%%0%%''+
-|  ''%%84%%'' ''%%0x80007A80%%'' ''%%8%%''|unsigned   |FMC 1 SPI address                 ''%%0x00%%''+
-|  ''%%85%%'' ''%%0x80007AA0%%'' ''%%8%%''|unsigned   |FMC 1 SPI write data        |       ''%%0x00%%''+
-|  ''%%86%%'' ''%%0x80007AC0%%'' ''%%1%%''|binary     |FMC 1 SPI trigger                    ''%%0%%''+
-|  ''%%87%%'' ''%%0x80007AE0%%'' ''%%1%%''|binary     |FMC 1 ADC rstn              |          ''%%1%%''+
-|  ''%%88%%'' ''%%0x80007B00%%'' ''%%1%%''|binary     |FMC 1 I2C read/write        |          ''%%0%%''+
-|  ''%%89%%'' ''%%0x80007B20%%'' ''%%7%%''|unsigned   |FMC 1 I2C device address    |       ''%%0x49%%''+
-|  ''%%90%%'' ''%%0x80007B40%%'' ''%%8%%''|unsigned   |FMC 1 I2C register address  |       ''%%0x00%%''+
-|  ''%%91%%'' ''%%0x80007B60%%'' ''%%8%%''|unsigned   |FMC 1 I2C write data        |       ''%%0x00%%''+
-|  ''%%92%%'' ''%%0x80007B80%%'' ''%%1%%''|binary     |FMC 1 I2C trigger                    ''%%0%%''+
-|  ''%%93%%'' ''%%0x80007BA0%%'' ''%%1%%''|binary     |FMC 1 PLL rstn              |          ''%%1%%''+
-|  ''%%94%%'' ''%%0x80007BC0%%'' ''%%1%%''|binary     |FMC 1 clock switch select            ''%%1%%''+
-|  ''%%95%%'' ''%%0x80007BE0%%'' ''%%1%%''|binary     |FMC 1 VCXO output enable    |          ''%%1%%''|+
  
-**Table 7.1:** List of additional configuration registers - part 1+This parameter {{:ds:projects:unimon:gateware:/math_516b9783.png?nolink&0x17}} defines the sampling frequency of all 40 ADCs in parallel.
  
-^    **index**^         **address**^    **bits**^**radix**  ^**description**                                     **default value**^ +The sampling frequency is given by:
-|   ''%%96%%'' ''%%0x80007C00%%''  ''%%5%%''|unsigned   |FMC 0 ADC 0 clock delay                                  ''%%0x0D%%''+
-|   ''%%97%%'' ''%%0x80007C20%%''  ''%%5%%''|unsigned   |FMC 0 ADC 1 clock delay                                  ''%%0x0D%%''+
-|   ''%%98%%'' ''%%0x80007C40%%''  ''%%5%%''|unsigned   |FMC 0 ADC 2 clock delay                                  ''%%0x0D%%''+
-|   ''%%99%%'' ''%%0x80007C60%%''  ''%%5%%''|unsigned   |FMC 0 ADC 3 clock delay                                  ''%%0x0D%%''+
-|  ''%%100%%'' ''%%0x80007C80%%''  ''%%5%%''|unsigned   |FMC 0 ADC 0 data delay                    |                ''%%0x00%%''+
-|  ''%%101%%'' ''%%0x80007CA0%%''  ''%%5%%''|unsigned   |FMC 0 ADC 1 data delay                    |                ''%%0x00%%''+
-|  ''%%102%%'' ''%%0x80007CC0%%''  ''%%5%%''|unsigned   |FMC 0 ADC 2 data delay                    |                ''%%0x00%%''+
-|  ''%%103%%'' ''%%0x80007CE0%%''  ''%%5%%''|unsigned   |FMC 0 ADC 3 data delay                    |                ''%%0x00%%''+
-|  ''%%104%%'' ''%%0x80007D00%%''  ''%%5%%''|unsigned   |FMC 1 ADC 0 clock delay                                  ''%%0x0D%%''+
-|  ''%%105%%'' ''%%0x80007D20%%''  ''%%5%%''|unsigned   |FMC 1 ADC 1 clock delay                                  ''%%0x0D%%''+
-|  ''%%106%%'' ''%%0x80007D40%%''  ''%%5%%''|unsigned   |FMC 1 ADC 2 clock delay                                  ''%%0x0D%%''+
-|  ''%%107%%'' ''%%0x80007D60%%''  ''%%5%%''|unsigned   |FMC 1 ADC 3 clock delay                                  ''%%0x0D%%''+
-|  ''%%108%%'' ''%%0x80007D80%%''  ''%%5%%''|unsigned   |FMC 1 ADC 0 data delay                    |                ''%%0x00%%''+
-|  ''%%109%%'' ''%%0x80007DA0%%''  ''%%5%%''|unsigned   |FMC 1 ADC 1 data delay                    |                ''%%0x00%%''+
-|  ''%%110%%'' ''%%0x80007DC0%%''  ''%%5%%''|unsigned   |FMC 1 ADC 2 data delay                    |                ''%%0x00%%''+
-|  ''%%111%%'' ''%%0x80007DE0%%''  ''%%5%%''|unsigned   |FMC 1 ADC 3 data delay                    |                ''%%0x00%%''+
-|  ''%%112%%'' ''%%0x80007E20%%''  ''%%1%%''|binary     |AFC LED select                            |                   ''%%0%%''+
-|  ''%%113%%'' ''%%0x80007E40%%''  ''%%3%%''|unsigned   |AFC LED value                                             ''%%0x7%%''+
-|  ''%%114%%'' ''%%0x80007E60%%''  ''%%1%%''|binary     |gate override                                               ''%%0%%''+
-|  ''%%115%%'' ''%%0x80007E80%%''  ''%%1%%''|binary     |gate override value                                         ''%%1%%''+
-|  ''%%116%%'' ''%%0x80007EC0%%''  ''%%8%%''|unsigned   |MLVDS direction                                          ''%%0x00%%''+
-|  ''%%117%%'' ''%%0x80007EE0%%''  ''%%8%%''|unsigned   |MLVDS output value                        |                ''%%0x00%%''+
-|  ''%%118%%'' ''%%0x80007E00%%''  ''%%1%%''|binary     |observer scope mode                                         ''%%1%%''+
-|  ''%%119%%'' ''%%0x80007EA0%%''  ''%%2%%''|unsigned   |observer valid signal select              |                 ''%%0x0%%''+
-|  ''%%120%%'' ''%%0x80007F00%%''  ''%%3%%''|unsigned   |observer multiplexer 0 select                             ''%%0x0%%''+
-|  ''%%121%%'' ''%%0x80007F20%%''  ''%%3%%''|unsigned   |observer multiplexer 1 select                             ''%%0x0%%''+
-|  ''%%122%%'' ''%%0x80007F40%%'' ''%%27%%''|unsigned   |observer number of samples - 1            |          ''%%0x00000FFF%%''+
-|  ''%%123%%'' ''%%0x80007F60%%''  ''%%3%%''|unsigned   |observer trigger select                                   ''%%0x0%%''+
-|  ''%%124%%'' ''%%0x80007F80%%'' ''%%64%%''|unsigned   |observer trigger compare vector (t = -1)  |  ''%%0x0000000000000000%%''+
-|  ''%%125%%'' ''%%0x80007FA0%%'' ''%%64%%''|unsigned   |observer trigger compare vector (t = 0)    ''%%0x0000000000000000%%''+
-|  ''%%126%%'' ''%%0x80007FC0%%'' ''%%64%%''|unsigned   |observer trigger compare bit mask          ''%%0xFFFFFFFFFFFFFFFF%%''+
-|  ''%%127%%'' ''%%0x80007FE0%%''  ''%%1%%''|binary     |observer arm trigger                      |                   ''%%0%%''|+
  
-**Table 7.2:** List of additional configuration registers - part 2+{{:ds:projects:unimon:gateware:/math_fb5ba218.png?nolink&0x31}}
  
-=== 39, 47, 55Scope {0, 1, 2continuous trigger ===+The allowed range for the sampling frequency is: {{:ds:projects:unimon:gateware:/math_e4a54a1f.png?nolink&0x25}}
  
-If set to 1, the trigger is armed and will be rearmed automatically after every capture completion.+The default setting of 0 corresponds to a sampling frequency of 5 MHz.
  
-=== 64, 80FMC {0, 1status LED select ===+The allowed range for {{:ds:projects:unimon:gateware:/math_516b9783.png?nolink&0x17}} is: {{:ds:projects:unimon:gateware:/math_726a25c2.png?nolink&0x25}}
  
-There is one tricolor LED on the FMC front panel labeled //status// that can be controlled by the gateware.+== 1: MLVDS calibration delay ==
  
-^  value^input                                                                                            ^ +The signals from the timing receiver enter the FPGA via the MLVDS lines with virtually no delay, while the corresponding ADC samples will be delayed due to the sampling process.
-|      0|ADC clock, blink frequency divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_326299be.png?nolink&0x21}}, green if AD9510 PLL is in lock, otherwise red  | +
-|      1|AD9510 monitoring clock, blink frequency divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_326299be.png?nolink&0x21}}                                   | +
-|   2, 3|static value from register ’status LED value’                                                    |+
  
-=== 65, 81: FMC {0, 1} status LED value ===+This register can be used to add an additional delay to the signals from the timing receiver in order to calibrate them to the delays of the ADCs.
  
-The static lighting pattern defined by this register becomes active if the corresponding register ’status LED select’ is set to 2 or 3.+The delay can be chosen from the range {{:ds:projects:unimon:gateware:/math_4854a4bb.png?nolink&0x25}}. Each LSB corresponds to an additional delay of 10 ns.
  
-^  bit^color +== 16, 24: FMC {01} ADC gain ==
-|    0|red    | +
-|    1|green +
-|    2|blue   |+
  
-=== 6682: FMC {0, 1} SPI cs ===+There are programmable amplifiers in front of each ADC inputwhich provide four discrete gains.
  
-Chip select signals (active high) of the SPI bus to the four ADCs and to the AD9510 PLL and clock distribution.+The following gains are available:
  
-^  bit^device                      +^      value^  gain input range^  resolution per LSB
-   0|ADC 0                       + ''%%0%%''    1|  +/- 10.24 V|      312.5 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V
-   1|ADC 1                       + ''%%1%%''    2|   +/- 5.12 V|     156.25 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V
-   2|ADC                       + ''%%2%%''    5|  +/- 2.048 V|       62.5 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V
-   3|ADC 3                       | + ''%%3%%''|    10|  +/- 1.024 V|      31.25 {{:ds:projects:unimon:gateware:/math_3a4e5659.png?nolink&0x17}}V|
-|    4|PLL and clock distribution  |+
  
-=== 67, 83: FMC {0, 1} SPI read/write ===+This register holds the concatenation of the gain settings of the FMC’s 20 ADCs:
  
-0: write mode, 1: read mode+^      bits^  gain of ADC^ 
 +|    1 .. 0|            0
 +|    3 .. 2|            1
 +|         …|            …| 
 +|  39 .. 38|           19|
  
-=== 6884: FMC {0, 1} SPI address ===+== 1718, 25, 26: FMC {0, 1} ADC input mux select p / n ==
  
-The address of the register that shall be accessed.+The ADCs have differential inputs. The two lanes p and n can be configured separately and individually for each ADC.
  
-=== 69, 85FMC {0, 1} SPI write data ===+The following input settings are available:
  
-The data that shall be written to a register.+^      value^input                            ^ 
 +|  ''%%0%%''|differential p / n input pin     | 
 +|  ''%%1%%''|ground                           | 
 +|  ''%%2%%''|not implemented                  | 
 +|  ''%%3%%''|calibration voltage of +4.128 V  |
  
-=== 70, 86: FMC {0, 1} SPI trigger ===+This register holds the concatenation of the input settings of the FMC’s 20 ADCs:
  
-Write a to this register to start a read or write access on the SPI busThe register does not have to be reset to before the next SPI trigger, just write another to it.+^      bits^settings of input p / n of ADC  ^ 
 +|    1 .0|0                               | 
 +|    3 .. 2|                              | 
 +|         …|…                               | 
 +|  39 .38|19                              |
  
-==71, 87FMC {0, 1ADC resetn ===+== 32 - 71: ADC {0 - 39offset correction summand ==
  
-Low active reset signal to the four ADCs in parallelTie to 0 and back to 1 to initiate a reset.+Correction summand for a possible offset deviation of the ADCThe offset correction precedes the gain correction.
  
-=== 72, 88FMC {0, 1I2c read/write ===+== 72 - 111ADC {0 - 39gain correction factor ==
  
-0: write mode, 1: read mode+Correction factor for a possible gain deviation of the ADC. The default value 0x8000 corresponds to a multiplication by 1. The possible correction range is {{:ds:projects:unimon:gateware:/math_69644564.png?nolink&0x25}}.
  
-=== 73, 89FMC {0, 1} I2C device address ===+== 127Reset ==
  
-The address of the connected VCXO is 0x49. +Writing a 1 to this register triggers a reset on the gateware, which also resets all configuration registers to their default values.\\ 
- +The reset will be automatically lifted so that the register does not have to be written to 0 after initiating reset.
-=== 74, 90: FMC {0, 1} I2C register address === +
- +
-The address of the register that shall be accessed. +
- +
-=== 75, 91: FMC {0, 1} I2C write data === +
- +
-The data that shall be written to a register. +
- +
-=== 76, 92: FMC {0, 1} I2C trigger === +
- +
-Write a 1 to this register to start read or write access on the I2C bus. The register does not have to be reset to 0 before the next I2C trigger, just write another 1 to it. +
- +
-=== 77, 93: FMC {0, 1} PLL resetn === +
- +
-Low active reset signal to the PLL and clock distribution. Tie to 0 and back to 1 to initiate a reset. +
- +
-=== 78, 94: FMC {0, 1} Clock switch select === +
- +
-There is a separate clock switch in front of the AD9510 PLL reference clock input. +
- +
-^  value^connect to                                                          ^ +
-|      0|MMCX connector labeled //REF// on the front panel of the FMC board  | +
-|      1|clock output from the FPGA via the FMC connector                    | +
- +
-=== 79, 95: FMC {0, 1} VCXO output enable === +
- +
-Enables the frequency output of the VCXO. +
- +
-=== 96 - 99 and 104 - 107: FMC {0, 1} ADC {0 - 3} clock delay === +
- +
-There is a configurable input delay for setting the correct digital interface timing for both the clock and the data signals. Increasing this value increases the delay of the clock, so that the data is sampled later. +
- +
-=== 100 - 103 and 108 - 111: FMC {0, 1} ADC {0 - 3} data delay === +
- +
-See above. Increasing this value increases the delay of the data, so that the data is sampled at an earlier position. +
- +
-=== 112: AFC LED select === +
- +
-There is one tricolor LED at the center of the AFC front panel labeled //L3// that can be controlled by the gateware+
- +
-^  value^input                                                               ^ +
-|      0|PCIe reference clock, blink frequency divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_326299be.png?nolink&0x21}}, white  | +
-|      1|static value from register 113 ’AFC LED value’                      | +
- +
-=== 113: AFC LED value === +
- +
-Static lighting pattern if register 112 ’AFC LED select’ = 1. +
- +
-^  bit^color +
-|    0|red    | +
-|    1|green +
-|    2|blue   | +
- +
-=== 114: Gate override === +
- +
-For testing purposes without an external gate signal this register can be set to 1 to simulate a gate signal via the register 115 ’gate override value’. +
- +
-=== 115: Gate override value === +
- +
-Can be used to simulate a gate signal when register 114 ’gate override’ is 1. +
- +
-=== 116: MLVDS direction === +
- +
-Determines the direction of the eight MLVDS lines on the AMC connector. A ’0’ corresponds to an input to the FPGA and a ’1’ to an output from the FPGA. +
- +
-=== 117: MLVDS output value === +
- +
-Determines the logic levels of the eight MLVDS lines if they are configured as outputs (see previous register). +
- +
-=== 118: Observer scope mode === +
- +
-When observer scope mode is 1, scope 0 operates in an easy to use mode for storing ADC data. +
- +
-Setting this register to 0 enables additional functionality like combining and choosing different signals to store and a more powerful and flexible two-stage trigger. +
- +
-Registers 119 to 127 are only relevant in non productive mode. +
- +
-=== 119: Observer valid signal select === +
- +
-Determines the data valid input to the observer. Samples are only stored when the valid signal is high. +
- +
-^  value^input                       ^ +
-|   0, 3|constant 1                  | +
-|      1|BPM result valid            | +
-|      2|BPM averaging result valid  | +
- +
-=== 120, 121: Observer multiplexer {0, 1} select === +
- +
-The observer stores samples that are 128 bits wide, which consist of two concatenated 64 bits wide multiplexer outputs. Each multiplexer can choose between eight different input vectors. Like this, each signal can be observed in parallel to any other signal. +
- +
-^  value^input vector(64 bits)                                    ^ +
-|      0|corrected ADC data of ADCs 0 - 3                         | +
-|      1|corrected ADC data of ADCs 4 - 7                         | +
-|      2|BPM 0 and 1 result, additional information               | +
-|      3|BPM 2 and 3 result, additional information               | +
-|      4|BPM 0 and 1 averaging result, additional information     | +
-|      5|BPM 2 and 3 averaging result, additional information     | +
-|      6|SPI and I2C signals, MLVDS signals, FMC trigger signals +
-|      7|test counter                                             | +
- +
-For a detailed description of the input vectors see [[#4112_observer|chapter 4.11.2]]. +
- +
-=== 122: Observer number of samples - 1 === +
- +
-The number of samples minus one that are stored after the observer has been triggered. Each sample consists of 16 bytes. +
- +
-=== 123: Observer trigger select === +
- +
-Analog to register 120 and 121. Determines on which observer input vector the trigger listens. +
- +
-=== 124: Observer trigger compare vector (t = -1) === +
- +
-64 bit wide compare vector that is compared with the observer input vector determined by register 123 ’observer trigger select’. If the two pattern match, the next sample will be compared to the compare vector determined by register 125: ’trigger compare vector (t = 0)’. +
- +
-=== 125: Observer trigger compare vector (t = -1) === +
- +
-See above. If the patterns do not match, the next sample will be compared to the compare vector determined by register 124: ’trigger compare vector (t = -1)’. If the patterns match the data acquisition is triggered. +
- +
-=== 126: Observer trigger compare bit mask === +
- +
-Determines which bits of the input vector shall be compared with that of the compare vectors. Valid for both trigger compare vectors (registers 124 and 125). For triggering, the patterns must match for all bits whose bit mask is 1. +
- +
-=== 126: Observer arm trigger === +
- +
-Starts the comparing process. Data is captured if the patterns defined by the previous three registers match. +
- +
-==== 7.1.2 Additional status registers ==== +
- +
-The following additional status registers can be read by software: +
- +
-^    **index**^         **address**^    **bits**^**radix**  ^**description**                     ^ +
-|   ''%%64%%'' ''%%0x80008800%%''  ''%%1%%''|binary     |FMC 0 SPI busy                      | +
-|   ''%%65%%'' ''%%0x80008820%%''  ''%%8%%''|unsigned   |FMC 0 SPI read data                 | +
-|   ''%%66%%'' ''%%0x80008840%%''  ''%%1%%''|binary     |FMC 0 I2C busy                      | +
-|   ''%%67%%'' ''%%0x80008860%%''  ''%%8%%''|unsigned   |FMC 0 I2C read data                 | +
-|   ''%%68%%'' ''%%0x80008880%%''  ''%%1%%''|binary     |FMC 0 PLL status                    | +
-|   ''%%69%%'' ''%%0x800088A0%%'' ''%%38%%''|unsigned   |FMC 0 VCXO initial RFREQ            | +
-|   ''%%70%%'' ''%%0x800088C0%%'' ''%%38%%''|unsigned   |FMC 0 VCXO RFREQ                    | +
-|   ''%%71%%'' ''%%0x800088E0%%'' ''%%32%%''|unsigned   |FMC 0 measured ADC clock frequency +
-|   ''%%72%%'' ''%%0x80008900%%'' ''%%32%%''|unsigned   |FMC 0 ADC FIFO underflow counter    | +
-|   ''%%73%%'' ''%%0x80008920%%'' ''%%32%%''|unsigned   |FMC 0 ADC FIFO overflow counter     | +
-|   ''%%80%%'' ''%%0x80008A00%%''  ''%%1%%''|binary     |FMC 1 SPI busy                      | +
-|   ''%%81%%'' ''%%0x80008A20%%''  ''%%8%%''|unsigned   |FMC 1 SPI read data                 | +
-|   ''%%82%%'' ''%%0x80008A40%%''  ''%%1%%''|binary     |FMC 1 I2C busy                      | +
-|   ''%%83%%'' ''%%0x80008A60%%''  ''%%8%%''|unsigned   |FMC 1 I2C read data                 | +
-|   ''%%84%%'' ''%%0x80008A80%%''  ''%%1%%''|binary     |FMC 1 PLL status                    | +
-|   ''%%85%%'' ''%%0x80008AA0%%'' ''%%38%%''|unsigned   |FMC 1 VCXO initial RFREQ            | +
-|   ''%%86%%'' ''%%0x80008AC0%%'' ''%%38%%''|unsigned   |FMC 1 VCXO RFREQ                    | +
-|   ''%%87%%'' ''%%0x80008AE0%%'' ''%%32%%''|unsigned   |FMC 1 measured ADC clock frequency +
-|   ''%%88%%'' ''%%0x80008B00%%'' ''%%32%%''|unsigned   |FMC 1 ADC FIFO underflow counter    | +
-|   ''%%89%%'' ''%%0x80008B20%%'' ''%%32%%''|unsigned   |FMC 1 ADC FIFO overflow counter     | +
-|   ''%%96%%'' ''%%0x80008C00%%'' ''%%16%%''|unsigned   |ADC 0 max peak to peak              | +
-|   ''%%97%%'' ''%%0x80008C20%%'' ''%%16%%''|unsigned   |ADC 1 max peak to peak              | +
-|   ''%%98%%'' ''%%0x80008C40%%'' ''%%16%%''|unsigned   |ADC 2 max peak to peak              | +
-|   ''%%99%%'' ''%%0x80008C60%%'' ''%%16%%''|unsigned   |ADC 3 max peak to peak              | +
-|  ''%%100%%'' ''%%0x80008C80%%'' ''%%16%%''|unsigned   |ADC 4 max peak to peak              | +
-|  ''%%101%%'' ''%%0x80008CA0%%'' ''%%16%%''|unsigned   |ADC 5 max peak to peak              | +
-|  ''%%102%%'' ''%%0x80008CC0%%'' ''%%16%%''|unsigned   |ADC 6 max peak to peak              | +
-|  ''%%103%%'' ''%%0x80008CE0%%'' ''%%16%%''|unsigned   |ADC 7 max peak to peak              | +
-|  ''%%111%%'' ''%%0x80008DE0%%''  ''%%1%%''|binary     |SDRAM initial calibration complete +
-|  ''%%112%%'' ''%%0x80008F80%%''  ''%%1%%''|binary     |observer triggered                  | +
-|  ''%%113%%'' ''%%0x80008FA0%%''  ''%%1%%''|binary     |observer capture busy               | +
- +
-**Table 7.3:** List of additional status registers +
- +
-=== 64, 80: FMC {0, 1} SPI busy === +
- +
-Indicates that a SPI read or write access is going on. The value of this register has to be checked to be 0 before triggering a SPI access. +
- +
-=== 65, 81: FMC {0, 1} SPI read data === +
- +
-Contains the result of a read access to a SPI register. +
- +
-=== 66, 82: FMC {0, 1} I2C busy === +
- +
-Indicates that an I2C read or write access is going on. The value of this register has to be checked to be 0 before triggering an I2C access. +
- +
-=== 67, 83: FMC {0, 1} I2C read data === +
- +
-Contains the result of a read access to an I2C register. +
- +
-=== 68, 84: FMC {0, 1} PLL status === +
- +
-Value of the configurable output pin //status// of the AD9510 PLL and clock distribution IC. By default this pin indicates lock status of the PLL. +
- +
-=== 69, 85: FMC {0, 1} VCXO initial RFREQ === +
- +
-//RFREQ// is a factory calibrated multiplicator to the XTAL frequency of the Si571 programmable VCXO. Before the programming of a new output frequency this value has to be read (see [[#31_si571_programmable_vcxo|chapter 3.1]]). +
- +
-=== 69, 86: FMC {0, 1} VCXO RFREQ === +
- +
-The VCXO output frequency is programmed to 125 MHz by the gateware. This register holds the value of //RFREQ// that has been programmed (see [[#31_si571_programmable_vcxo|chapter 3.1]]). +
- +
-=== 71, 87: FMC {0, 1} measured ADC clock frequency === +
- +
-The ADC clock is measured against the main processing clock. This register holds the number of detected ADC clock cycles during 1 second of the main processing clock. +
- +
-=== 72, 88: FMC {0, 1} ADC FIFO underflow counter === +
- +
-If the ADC clock is slower than the main processing clock, samples will be repeated by the clock domain crossing FIFO output logic. For each repetition the underflow counter will be incremented by 1. +
- +
-=== 73, 89: FMC {0, 1} ADC FIFO underflow counter === +
- +
-If the ADC clock is faster than the main processing clock, samples will discarded by the clock domain crossing FIFO input logic. For each discarded sample the overflow counter will be incremented by 1. +
- +
-=== {96 - 103}: ADC {0 - 7} max peak to peak === +
- +
-The maximum and the minimum value of the ADC data is determined over a free running period of 1 second. This register contains the difference of the maximum and the minimum value. +
- +
-=== 111: SDRAM initial calibration complete === +
- +
-The communication to the SDRAM is controlled by an IP core by Xilinx which performs a timing calibration at start up. The value of this register will be 1 after completion of the initial calibration. +
- +
-=== 112: observer triggered === +
- +
-Indicates that the observer has been triggered. +
- +
-=== 113: observer capture busy === +
- +
-Indicates that a capturing process is ongoing. +
- +
-===== 7.2 Architecture information storage ===== +
- +
-The first seven eights of the Block RAM (see memory mapping, table 6.1) are used to store information about the observer signals, the registers and the gateware version. +
- +
-==== 7.2.1 Observer signal information ==== +
- +
-Information about the signals connected to the eight observer multiplexer inputs is stored in the first half of the Block RAM. Following information is stored for every bit of each of the eight 64 bits wide multiplexer inputs: +
- +
-  * name of signal (30 bytes) +
-  * display type of signal (1 byte) +
-  * bit index in signal (1 byte) +
- +
-^         **address**^  **multiplexer input**  ^**bytes 0 - 29**  ^**byte 30**               ^**byte 31**            ^ +
-|  ''%%0x80000000%%''           0            |name of signal A  |display type of signal A  |0                      | +
-|  ''%%0x80000020%%''           0            |name of signal A  |display type of signal A  |1                      | +
-|                   …|            …            |…                 |…                         |width - 1 of signal A  | +
-|  ''%%0x80000XXX%%''           0            |name of signal B  |display type of signal B  |0                      | +
-|  ''%%0x80000XXX%%''           0            |name of signal B  |display type of signal B  |1                      | +
-|                   …|            …            |…                 |…                         |width - 1 of signal B  | +
-|                   …|            …            |…                 |…                         |…                      | +
-|  ''%%0x80000800%%''           1            |name of signal C  |display type of signal C  |0                      | +
-|  ''%%0x80000820%%''           1            |name of signal C  |display type of signal C  |1                      | +
-|                   …|            …            |…                 |…                         |width - 1 of signal C  | +
-|  ''%%0x80000XXX%%''           1            |name of signal D  |display type of signal D  |0                      | +
-|  ''%%0x80000XXX%%''           1            |name of signal D  |display type of signal D  |1                      | +
-|                   …|            …            |…                 |…                         |width - 1 of signal D  | +
-|                   …|            …            |…                 |…                         |…                      | +
-|  ''%%0x80003FE0%%''           7            |name of signal X  |display type of signal X  |width - 1 of signal X  | +
- +
-**Table 7.4:** Observer signal information storage format +
- +
-Table 7.4 shows the storage format of the 512 entries, each of which has a width of 32 bytes. The coding of the display type byte is the following: +
- +
-^  value^display type  ^ +
-|      0|hexadecimal   | +
-|      1|signed        | +
-|      2|unsigned      | +
-|      3|binary        | +
-|      4|analog        | +
- +
-The names are stored as ASCII strings. If a name is shorter than 30 bytes, the remaining bytes are filled with Null characters. +
- +
-The observer signal information is used by the FPGA Observer software to display the observer signals in the Data Acquisition tab (see [[#813_data_acquisition_tab|chapter 8.1.3]]). The information is also used to format the measurement data to be displayed by GTKWave. +
- +
-==== 7.2.2 Register information ==== +
- +
-Information about the 128 configuration registers and the 128 status registers is stored in the third quarter of the Block RAM. Following information is stored for every register: +
- +
-  * name of register (31 bytes) +
-  * number of bits (1 byte) +
- +
-^         **address**^**bytes 0 - 30**                    ^**byte 31**                          ^ +
-|  ''%%0x80004000%%''|name of configuration register 0    |width of configuration register 0    | +
-|  ''%%0x80004020%%''|name of configuration register 1    |width of configuration register 1    | +
-|                   …|…                                   |…                                    | +
-|  ''%%0x80004FE0%%''|name of configuration register 127  |width of configuration register 127  | +
-|  ''%%0x80005000%%''|name of status register 0           |width of status register 0           | +
-|  ''%%0x80005020%%''|name of status register 1           |width of status register 1           | +
-|                   …|…                                   |…                                    | +
-|  ''%%0x80005FE0%%''|name of status register 127         |width of status register 127         | +
- +
-**Table 7.5:** Register information storage format +
- +
-Table 7.5 shows the storage format of the 256 entries, each of which has a width of 32 bytes. The names are stored as ASCII strings. If a name is shorter than 31 bytes, the remaining bytes are filled with Null characters. If not all registers are in use, a width of 0 bits indicates that a register is not present. +
- +
-The register information is used by the FPGA Observer software to display the registers in the Register Access tab (see [[#812_register_access_tab|chapter 8.1.2]]). +
- +
-==== 7.2.3 Gateware information ==== +
- +
-The address range from 0x80006000 to 0x80006FFF is used to store information about the gateware version. The information is stored as an ASCII string of variable length (maximum 4 kiB), which is assembled from information from the Git repository. It contains the URL of the remote server of the Git repository, the latest commit hash and the latest commit date. +
- +
-The gateware information is used by the FPGA Observer software to display the information in the Gateware Information tab (see [[#817_gateware_information_tab|chapter 8.1.7]]), except from the bitstream generation date, which is read from status register 126 ’build timestamp’. +
- +
-====== 8 Test software ====== +
- +
-===== 8.1 FPGA Observer ===== +
- +
-There is a graphical test software intended to be run on the CPU unit. It is implemented in Python using the GTK 3 GUI toolkit. +
- +
-==== 8.1.1 Installation and usage ==== +
- +
-The sources and an installation script can be found under ''%%src/software/fpga_observer/%%'' in the //Cryring_BPM_Gateware// Git repository. +
- +
-=== Installation === +
- +
-Connect to the CPU unit e.g. via ssh. Clone the //Cryring_BPM_Gateware// Git repository: +
- +
-''%%git clone git@git.gsi.de:BEA_HDL/Cryring_BPM_Gateware.git%%'' +
- +
-Install the PCIe driver: +
- +
-''%%cd src/software/pcie_driver%%''\\ +
-''%%sudo ./install.sh%%'' +
- +
-Install the FPGA Observer software: +
- +
-''%%cd ../fpga_observer%%''\\ +
-''%%sudo ./install.sh%%'' +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_Register_Access.png| FPGA Observer - Register Access tab}} +
- +
-**Figure 8.1:** FPGA Observer - Register Access tab +
- +
-=== Usage === +
- +
-For the PCIe driver to work, the bitstreams of the FPGAs have to be loaded before powering the CPU unit. If that is not the case, power cycle the CPU unit by pulling out the Hot Swap Handle and pushing it in again. A software reboot does not work. +
- +
-Connect to the CPU unit e.g. via ''%%ssh -X%%'' in order to allow a graphical connection. Start the FPGA Observer software by: +
- +
-''%%sudo fpga_observer%%'' +
- +
-A GUI should open and a choice of FPGA serial numbers should be displayed on the upper left corner. If the list is empty, either the loading of the FPGAs finished after powering the CPU unit or the PCIe driver did not install correctly. The FPGA serial numbers can be used to identify the AFC board you like to access. Choose a serial number and click //connect//+
- +
-==== 8.1.2 Register Access tab ==== +
- +
-The names and widths of the registers are read from an information memory region in the FPGA (see [[#722_register_information|chapter 7.2.2]]). The status registers are displayed on the left and the configuration registers on the right. +
- +
-The //read// button reads all the status registers either once or continuously if the //continuous// check button is checked. The //write// button writes all the configuration registers whose check buttons next to the write value are checked. +
- +
-==== 8.1.3 Data Acquisition tab ==== +
- +
-The names and widths of the signals connected to the eight observer multiplexer inputs are read from an information memory region in the FPGA (see [[#721_observer_signal_information|chapter 7.2.1]]). +
- +
-The two combo boxes //Observer 0// and //Observer 1// determine which multiplexer inputs are selected for data acquisition. The combo box //Trigger// determines on which of the observer inputs the trigger will listen. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_Data_Acquisition.png| FPGA Observer - Data Acquisition tab}} +
- +
-**Figure 8.2:** FPGA Observer - Data Acquisition tab +
- +
-The //Number Of Samples// entry determines how many samples will be stored after a trigger event when the //capture// button has been pressed. If the //continuous// check button is checked, the trigger will be rearmed automatically when the data acquisition completes. +
- +
-The individual //Trigger Active (&)// check buttons define on which signals the trigger will listen. All of the enabled conditions have to become true for a trigger event. +
- +
-The trigger conditions for t = -1 and t = 0 contain the compare vectors of the two stage trigger which have to match in consecutive clock cycles. The //Trigger Mask (&)// defines on which bits of a signal the trigger will listen. +
- +
-When the data acquisition completes, the open source waveform viewer GTKWave is called to display the captured data, which has been stored to a .vcd file before. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:GTKWave.png| GTKWave}} +
- +
-**Figure 8.3:** GTKWave +
- +
-==== 8.1.4 BPM Calculation tab ==== +
- +
-The result of the BPM algorithm and of the averaging are displayed in this tab. If the //read// button is pressed, the values from status registers 0 - 3 and 4 - 7 (see [[#622_status_registers|chapter 6.2.2]]) are read once (or continuously if the check button //continuous// is checked). The displayed values are the register values divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}}. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_BPM.png| FPGA Observer - BPM Calculation tab}} +
- +
-**Figure 8.4:** FPGA Observer - BPM Calculation tab +
- +
-==== 8.1.5 Scope tabs ==== +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_Scope0.png| FPGA Observer - Scope 0 tab}} +
- +
-**Figure 8.5:** FPGA Observer - Scope 0 tab +
- +
-==== 8.1.6 Peripherals Configuration tab ==== +
- +
-=== Configuration === +
- +
-A configuration file can be loaded to program the three different peripheral devices documented in [[#3_peripheral_devices|chapter 3]]. An initial configuration is already performed by the gateware after startup.\\ +
-The configuration file is a comma separated values (.csv) file with the following syntax: +
- +
-//device number// (1 hexadecimal digit), //register number// (2 hexadecimal digits), //value// (2 hexadecimal digits) +
- +
-The device number is encoded as follows: +
- +
-^number  ^device                        ^ +
-|0 - 3   |ADCs 0 - 3 on FMC0            | +
-|4       |all ADCs on FMC0 in parallel +
-|5       |PLL on FMC0                   | +
-|6       |VCXO on FMC0                  | +
-|7 - A   |ADCs 0 - 3 on FMC0            | +
-|B       |all ADCs on FMC0 in parallel +
-|C       |PLL on FMC0                   | +
-|D       |VCXO on FMC0                  | +
- +
-A correct configuration of the VCXOs via software can not be guaranteed due to the I2C configuration timeout of 10 ms of the VCXOs (see [[#31_si571_programmable_vcxo|chapter 3.1]]). Any configuration to the VCXOs should be checked by subsequently reading back the register values. +
- +
-=== Reading the device registers === +
- +
-The complete register bank of the first ADC, the PLL and the VCXO on FMC 0 can be read and stored to three individual log files in the ''%%/tmp%%'' directory. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_Peripherals_Configuration.png| FPGA Observer - Peripherals Configuration tab}} +
- +
-**Figure 8.6:** FPGA Observer - Peripherals Configuration tab +
- +
-==== 8.1.7 Gateware Information tab ==== +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FPGA_Observer_Gateware_Information.png| FPGA Observer - Gateware Information tab}} +
- +
-**Figure 8.7:** FPGA Observer - Gateware Information tab +
- +
-Information about the gateware version is displayed in this tab. The URL of the remote server of the Git repository, the latest commit hash and the latest commit date are read from an information memory region in the FPGA (see [[#723_gateware_information|chapter 7.2.3]]). The bitstream generation date is read from status register 126 ’build timestamp’. +
- +
-===== 8.2 Test scripts ===== +
- +
-==== 8.2.1 PCIe access test script ==== +
- +
-There is a PCIe access test script under ''%%src/software/pcie_driver/test_pcie_access.sh%%'' in the //Cryring_BPM_Gateware// Git repository. It uses the tools provided together with the XDMA PCIe driver to test some basic reading and writing to different memories via the PCIe driver. The reading results are displayed via hexdump. +
- +
-====== 9 Helper scripts ====== +
- +
-===== 9.1 VHDL beautification ===== +
- +
-There is a script ''%%src/scripts/beautify_vhdl.py%%'' for autoformatting VHDL files using the open source software //Emacs//+
- +
-The script expects one parameter: ''%%<file that shall be formatted>%%'', or ''%%all%%'' for formatting all VHDL files in the repository. The formatting is performed in place, overwriting the original source file. +
- +
-The script applies several corrections and changes to the //Emacs// formatting result: +
- +
-  * correction of the handling of the comparison operator ''%%<=%%'' +
-  * correction of the handling of initializations like ''%%(others => ’0’)%%'' +
-  * enforcing of spaces around the operators ''%%+%%'', ''%%-%%'', ''%%*%%'', ''%%/%%'', ''%%&%%'' +
-  * no indentation for closing brackets +
-  * aligning of full comment lines to the indentation level of the following VHDL command +
-  * indentation with tabs instead of spaces +
- +
-===== 9.2 Remote power cycling of the CPU unit ===== +
- +
-Whenever the bitstream of an FPGA is reloaded, the CPU unit has to be rebooted via its Hot Swap Handle in order to establish a PCIe connection. A software reboot does not work. +
- +
-An alternative possibility of remote power cycling the CPU unit is via the MCH. +
- +
-The script ''%%src/scripts/reboot_cpu_unit.sh%%'' instructs the MCH via SSH to power down and repower the CPU unit. The script expects one parameter: ''%%<name of MCH, e.g. sdmch023>%%''+
- +
-The script takes about 60 seconds to complete. +
- +
-===== 9.3 Remote power cycling of a complete MicroTCA crate ===== +
- +
-Some problems can only be solved by a complete power cycle of the crate. +
- +
-If the MCH is still accessible, this can be performed by the script ''%%src/scripts/powercycle_mtca_crate.py%%''+
- +
-===== 9.4 Plotting of measurement data ===== +
- +
-The script ''%%src/scripts/plot_frequency_response.py%%'' can be used to plot measurement data. It was used to create figure 12.6. +
- +
-===== 9.5 Generation of a VHDL file for monitoring and control ===== +
- +
-The monitoring and control configuration of the gateware is defined by the configuration files ''%%observer_signals.csv%%'', ''%%read_registers.csv%%'' and ''%%write_registers.csv%%'' in the folder ''%%src/config%%''+
- +
-The script ''%%src/scripts/generate_monitoring_and_control.py%%'' is used to convert the configuration to a VHDL file stored as ''%%src/vhdl/generated_constant_package.vhd%%''. It contains the register default values and a Block RAM initialization vector containing the observer and register configuration. +
- +
-The script is also executed by the gateware build flow documented in [[#5_build_flow_and_simulation|chapter 5]]. +
- +
-===== 9.6 Generation of documentation ===== +
- +
-==== 9.6.1 PDF ==== +
- +
-There is a script ''%%doc/scripts/create_pdf.sh%%'' for generating a PDF file from the Latex sources in ''%%doc/tex%%''. It calls the open source software //Pdflatex// twice on the top level documentation file ''%%Cryring_BPM_Gateware_Documentation.tex%%'' to enable the generation of references inside the PDF file. +
- +
-==== 9.6.2 Markdown ==== +
- +
-There is a script ''%%doc/scripts/create_markdown.py%%'' for generating the Markdown file ''%%README.md%%'', which is displayed on the repository’s start page in Gitlab. The script uses the open source software //Pandoc// for an initial conversion of the Latex sources in ''%%doc/tex%%''+
- +
-The result of //Pandoc// is postprocessed for multiple reasons: +
- +
-  * conversion of the math syntax to Gitlab’s .md format +
-  * corrections of the bibliography, HTML syntax and Latex labels +
-  * corrections of the references to figures, tables and equations +
-  * enumeration of chapters, sections and subsections +
-  * adding of captions for figures and equations +
-  * enumeration of figures, tables and equations +
-  * generation of a table of contents +
-  * implementation of citations +
- +
-Additional documentation which is not included in the Latex sources is appended from the file ''%%doc/markdown/epilog.md%%''+
- +
-==== 9.6.3 DokuWiki ==== +
- +
-There is a script ''%%doc/scripts/create_dokuwiki.py%%'' for generating a DokuWiki file which can be used to populate a Wiki page on e.g. https://www-bd.gsi.de/dokuwiki. +
- +
-The script converts the Latex documentation sources to the DokuWiki format in four steps: +
- +
-  - conversion of Latex sources to Markdown +
-  - preprocessing of Markdown before the conversion to DokuWiki +
-  - calling //Pandoc// to convert Markdown to DokuWiki +
-  - postprocessing for correction, extension of functionality and a different style +
- +
-The preprocessing actions are: +
- +
-  * removing table of contents since it is automatically generated by DokuWiki +
- +
-The postprocessing actions are: +
- +
-  * conversion or equations to images since DokuWiki can not render equations +
-  * replacement of HTML tags, Latex color tags, etc. since DokuWiki can not handle them +
-  * conversion of the reference format +
- +
-====== 10 Continuous integration environment ====== +
- +
-There is a continuous integration environment setup for the //Cryring_BPM_Gateware// Git repository. It is implemented as a so called Gitlab Runner that communicates with the remote of the Git repository, the Gitlab server //git.gsi.de//+
- +
-At the moment the Gitlab Runner is running on the Linux server //sdlx035// located in a server room in the basement. +
- +
-The benefits of continuous integration are: +
- +
-  * every change will be tested automatically +
-  * it is ensured that no files are missing in the repository +
-  * the master branch can be kept functional at any time +
-  * build results like e.g. bitstreams are automatically generated and can be archived +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:Gitlab_pipelines.png| Gitlab: continuous integration pipelines}} +
- +
-**Figure 10.1:** Gitlab: continuous integration pipelines +
- +
-===== 10.1 Installation ===== +
- +
-There is an installation script ''%%install.sh%%'' in the //Gitlab_Runner_Setup_Centos_7// Git repository. It installs the Gitlab Runner as well as the software needed for simulation, generation of documentation and building an FPGA. +
- +
-After the installation, the newly setup Gitlab Runner has to configured to connect to a remote repository on a Gitlab server. In the repository’s web front end on the Gitlab server, go to //Settings CI/CD Runners// and copy the registration token which you will need in the following step. +
- +
-On the newly installed Gitlab Runner server, open a terminal and type ''%%sudo gitlab-runner register%%''+
- +
-Enter the following information: +
- +
-  * gitlab-ci coordinator URL: e.g. ''%%https://git.gsi.de%%'' +
-  * gitlab-ci token: enter the registration token copied before +
-  * gitlab-ci description: name of the server, e.g. ''%%sdlx035%%'' +
-  * gitlab-ci tags: leave empty +
-  * executor: ''%%shell%%'' +
- +
-You can add multiple repositories with different tokens by running ''%%sudo gitlab-runner register%%'' multiple times. +
- +
-===== 10.2 Pipeline Stages ===== +
- +
-Each ''%%push%%'' to the Gitlab server will trigger a so called continuous integration / continuous delivery (CI/CD) pipeline. The pipeline setup is defined by the file ''%%gitlab-ci.yml%%'' in the root folder of the repository. +
- +
-The following pipeline stages are defined: +
- +
-  * documentation +
-  * simulation +
-  * FPGA build +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:Gitlab_pipeline_stages.png| Gitlab: Pipeline stages}} +
- +
-**Figure 10.2:** Gitlab: Pipeline stages +
- +
-==== 10.2.1 Documentation ==== +
- +
-The script ''%%create_documentation.sh%%'' in ''%%doc/tex%%'' is run to generate this documentation from the Latex source files. Pdflatex is run twice by the script to allow the generation of references inside the document. This pipeline stage succeeds if Pdflatex can generate the PDF without errors. +
- +
-The log file of Pdflatex and - if successful - the PDF of the documentation are archived. +
- +
-==== 10.2.2 Simulation ==== +
- +
-The script ''%%run/run_simulation.sh%%'' is run which uses the Vivado command line interface to simulate the top level of the gateware. Test signals from the ADCs are generated as inputs to the simulation. The BPM results are saved to a file which is compared to a reference pattern. This pipeline stage succeeds if there is no error in simulation and if the BPM result file matches the reference pattern. +
- +
-The log file of the simulation and - if successful - a file with the BPM results from the simulation are archived. +
- +
-==== 10.2.3 FPGA build ==== +
- +
-The script ''%%run/run_build_flow.sh%%'' is run which uses the Vivado command line interface to build the gateware. This pipeline stage succeeds if there is no error during the build process and if a bitstream file has been generated. +
- +
-Different log files from synthesis and implementation, different reports like utilization and timing reports and - if successful - the bitstream file are archived. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:Gitlab_pipeline_console.png| Gitlab: Pipeline progress console}} +
- +
-**Figure 10.3:** Gitlab: Pipeline progress console +
- +
-===== 10.3 Build results ===== +
- +
-For each of the pipeline stages the archiving of build results can be configured for an adjustable time period, which is set to one week. If the period has passed and the build results have been deleted, they can be generated again by restarting the pipeline. +
- +
-The build results can be downloaded from the Gitlab web front end where they are called //job artifacts// (see figure 10.3). +
- +
-<color green>**The CI/CD pipelines can also be used to generate FPGA bitstreams without +
-having to set up a build environment.**</color> +
- +
-===== 10.4 Settings ===== +
- +
-You can define individual settings for the CI/CD section of each Git repository in the Gitlab web front end. The following settings should fit for most cases: +
- +
-  * Use git clone to get the recent application code, otherwise the pipelines might fail during git fetch:\\ +
-//Settings CI/CD General pipelines Git strategy for pipelines: git clone// +
-  * Increase the timeout to allow FPGA build to finish in any case:\\ +
-//Settings CI/CD General pipelines Timeout: 6h// +
- +
-====== 11 Programming and hardware configuration ====== +
- +
-===== 11.1 Programming the gateware ===== +
- +
-==== 11.1.1 Using a JTAG programmer ==== +
- +
-Before being able to access the FPGA you need to program the JTAG switch on the AFC board using a script from the //Cryring_BPM_Gateware// Git repository. Open the Vivado Hardware Manager software: +
- +
-//Tools Run Tcl Script//: ''%%src/scripts/program_scansta_jtag_switch.tcl%%'' +
- +
-You should now see a //xc7a200t_0// device. Right click on it and choose //Program Device//. +
- +
-Choose the correct bitstream (.bit file) and press //OK//. The programming takes about one minute. +
- +
-==== 11.1.2 Using a JTAG Switch Module ==== +
- +
-If there is a JTAG Switch Module (JSM) in the MicroTCA crate, the bitstream can also be programmed remotely via a so called Xilinx Virtual Cable: +
- +
-  * download ''%%svf_to_nsvf-linux-x86.bin%%'' from //MCH GUI JSM// +
-  * download ''%%afc_scansta.sfv%%'' from https://github.com/lnls-dig/fpga-programming +
-  * convert ''%%afc_scansta.sfv%%'' to ''%%afc_scansta.nsfv%%'' using the command ''%%./svf_to_nsvf-linux-x86.bin afc_scansta.sfv%%'' +
-  * upload ''%%afc_scansta.nsfv%%'' in //MCH GUI JSM// to the port of the JTAG switch to which the AFC board you want to program is connected +
-  * open Vivado Hardware Manager +
-  * //Open Target New Target Next Local Server Add Xilinx Virtual Cable (XVC)// +
-  * //Hostname//: ''%%sdmch<xxx>.acc.gsi.de%%'' +
-  * Port: find correct port number in //NAT-MCH GUI JSM// +
-  * //Finish// +
-  * //Open target// +
-  * you should see the FPGA now in Vivado Hardware Manager and can program it +
- +
-The first four steps are persistent and only have to be executed initially. +
- +
-==== 11.1.3 Storing a bitstream persistently in the SPI Flash ==== +
- +
-There is a 256 MiBits SPI Flash memory on the AFCv3.1 board for persistent bitstream storage. The Flash memory of the AFCv2.0 board has a size of 128 MiBits. +
- +
-=== File format conversion === +
- +
-First you have to convert the bitstream (.bit) file to a .mcs file. There is a script in the //Cryring_BPM_Gateware// Git repository for this purpose: +
- +
-''%%src/scripts/convert_bit_to_mcs.sh <path to .bit file>%%'' +
- +
-The .mcs file will be generated in the same folder as the .bit file. +
- +
-=== Programming === +
- +
-Program the JTAG switch on the AFC board as described in [[#1111_using_a_jtag_programmer|chapter 11.1.1]]. You should now see a //xc7a200t_0// device.\\ +
-Right click on it and choose //Add Configuration Memory Device// and choose //mt25ql256-spi-x1_x2_x4// (AFCv3.1) or //mt25ql128-spi-x1_x2_x4// (AFCv2.0) +
- +
-You should now see a //mt25ql256-spi-x1_x2_x4// / //mt25ql128-spi-x1_x2_x4// device. +
- +
-Right click on it and choose //Program Configuration Memory Device//.\\ +
-Choose the .mcs file you created before and press //OK//. The programming is really slow and can take up to half an hour. +
- +
-===== 11.2 Configuration of the MCH ===== +
- +
-==== 11.2.1 Via the MCH’s web interface ==== +
- +
-=== Base configuration === +
- +
-//MCH global parameter SSH access: enabled//\\ +
-This will trigger SSH key generation which takes some minutes to complete. +
- +
-//PCIe parameter Upstream slot power up delay: 5 sec//\\ +
-Delay before the CPU unit will power up on start up. For making sure that the bitstreams are loaded to the AFC’s FPGAs from Flash memory before the CPU unit boots you might have to increase this value. +
- +
-//PCIe parameter PCIe hot plug delay for AMCs: 0 sec//\\ +
-Delay before the AFC boards will power up on start up. +
- +
-=== Switch PCIe x80 === +
- +
-Set the CPU-Unit as upstream AMC source in ’Virtual Switch 0’: +
- +
-//PCIe Virtual Switches Upstream AMC: AMC1/4..7//\\ +
-(for CPU unit in AMC slot 1) +
- +
-Make sure you enable //PCIe downstream ’4..7’// for the AMC slots which contain your AFC version 3.1 boards. For AFC version 2.0 boards, due to a different connection of the four FPGA’s PCIe lanes to the eight AMC’s PCIe lanes you need to enable //PCIe downstream ’8..11’//+
- +
-==== 11.2.2 Via USB ==== +
- +
-The most comfortable way of configuring the MCH is via its web interface. If you have accidentally disabled the webserver, set an invalid IP or DHCP configuration or reset the MCH settings to default, you can access the MCH via an USB connection to the micro USB port on the left side of the front panel. +
- +
-On a Linux PC, connect a micro USB cable and check via ''%%dmesg%%'' that a //LUFA USB-RS232 Adapter// has been detected. The driver will be accessible at ''%%/dev/ttyACM<some number>%%'', use e.g. Putty to connect to this serial port using the parameter speed = 19200. +
- +
-Now typing ''%%mch%%'' will output information about the MCH. Typing ''%%?%%'' will display a list of available commands. Most of the settings of the web interface are also available on the command line interface. You can for example set the IP address or a DHCP name to be able to connect to the web interface. +
- +
-===== 11.3 Enabling network boot on the CPU unit ===== +
- +
-==== 11.3.1 BIOS settings ==== +
- +
-Shortly after powering the CPU unit, press F2 to enter the BIOS. +
- +
-In the //Main// tab, go to //Boot Features// and select the following (using F6 for enabling and F5 for disabling): +
- +
-  * ''%%PXE BOOT: <Enabled>%%'' +
-  * ''%%Front ETH0: <Enabled>%%'' or Front Panel ETH1: <Enabled>, depending on the version of the CPU unit and the BIOS +
-  * ''%%Auto Retry PXE Boot: Enabled%%''. The existence of this menu entry depends on the BIOS version. +
- +
-In the //Advanced// tab, go to //Network Stack Configuration// and enable //Ipv4 PXE Support//. The availability of this menu entry also depends on the BIOS version. +
- +
-In the //Boot// tab, go to //Legacy// and //Boot Type Order//. There should be an //Others// entry that has to be shifted to the top of the list using F6. In newer BIOS versions, there is a //Boot Option #1// entry in the //Boot// tab, which has to be chosen to //IBA GE Slot 1600 v1513//. +
- +
-Save the settings by pressing F4. +
- +
-The CPU unit should boot from network after the next reboot. For the loading of the correct network image, the MAC address of the desired Ethernet port of the CPU unit has to registered in the DHCP server responsible for distributing the locations from which to load the network images. +
- +
-==== 11.3.2 Defining the boot image ==== +
- +
-The boot image that will be loaded by the CPU is defined by the settings stored on ''%%asl740%%'': +
- +
-  * ''%%ssh <username>@asl740%%'' +
-  * ''%%cd /common/tftp/lobi/pxe/pxelinux.cfg%%'' +
-  * ''%%cat info.txt%%'' will display some example configuration +
- +
-The default boot image is ''%%C7_R13_78_UTCA%%''. In this image, no ethernet device is defined for retrieving the DHCP settings, which leads to maximum flexibility but also to a very long boot time, since all the ethernet devices of the CPU will poll for DHCP settings. +
- +
-To speed up the boot process, the ethernet device of the front panel ETH1 connector should be defined. Unfortunately, Linux numbers the ethernet devices dynamically and different PCIe switch settings in the MCH will lead to different numberings. +
- +
-To enable booting only from e.g. ''%%enp15s0%%'' on e.g. ''%%sddsc067%%'': +
- +
-  * ''%%cp C7_R13_78_UTCA C7_R13_78_UTCA.enp15s0%%'' +
-  * change ''%%ip=dhcp%%'' to ''%%ip=enp15s0:dhcp%%'' +
-  * ''%%rm sddsc067%%'' +
-  * ''%%ln -s C7_R13_78_UTCA.enp15s0 sddsc087%%'' +
- +
-Keep in mind that this configuration is only valid for one special PCIe switch setting. The boot process will fail if the PCIe switch settings are changed. +
- +
-===== 11.4 MMC firmware ===== +
- +
-The NXP LPC1764FBD100 microcontroller on the AFC board is responsible for: +
- +
-  * implementing the AMC protocol: +
-    * power control +
-    * provision of sensor data +
-    * driving the AMC standard LEDs +
-    * upstart procedure +
-  * configuration of the onboard devices: +
-    * PLL configuration +
-    * clock switch configuration +
-  * control of various pins on the FPGA and the FMC connectors: +
-    * FPGA reset pin +
-    * FMC power good pins +
- +
-==== 11.4.1 Building the MMC firmware ==== +
- +
-=== Getting the sources === +
- +
-The source code of LNLS’s openMMC code can be found on https://github.com/lnls-dig/openMMC. +
- +
-=== Installation of required software === +
- +
-An ARM cross compiler is needed to compile the code on a x86-64 architecture. +
- +
-A prebuild GCC for ARM can be downloaded from e.g. https://launchpad.net/gcc-arm-embedded/+download. +
- +
-Install the downloaded TAR archive by: +
- +
-''%%cd /usr/local/bin && tar xjf <path to downloaded archive>%%''+
- +
-=== Building === +
- +
-  * Create a ''%%build%%'' directory in the repository’s root directory and change to it. +
-  * ''%%cmake ../ -DBOARD=afc-bpm -DVERSION=3.1%%'' +
-  * ''%%make%%'' +
- +
-The firmware files will be created in the ''%%out%%'' directory inside the ''%%build%%'' directory. There will be two different output files: +
- +
-  * ''%%bootloader.bin%%'', intended to be loaded to the base address 0x0 in the microcontroller’s flash memory +
-  * ''%%openMMC.bin%%'', intended to be loaded to the base address 0x2000 in the microcontroller’s flash memory +
- +
-==== 11.4.2 Programming the MMC firmware ==== +
- +
-For programming the MMC firmware into the LPC microcontroller you need to install a proprietary software from NXP called LPCxpresso. +
- +
-=== Installation of LPCxpresso on Linux === +
- +
-Download LPCxpresso from the NXP website [[#15_references|[12]]]. You need to register for the download. Follow the instructions in ''%%INSTALL.txt%%''. After the installation, open the IDE via ''%%<installation directory>/lpcxpresso%%'' and register the installation via //Help Activate Create serial number and register (Free Edition)//. Create a serial number in the dialog, copy it to the form in the website and afterwards paste the activation key you got from the website to //Help Activate Activate (Free Edition)//+
- +
-=== Programming === +
- +
-Disconnect the AFC board completely. The power for programming the microcontroller will come from the LPC-Link programmer. Connect and power the LPC-Link programmer via USB and connect the customized cable to the //CPU-JTAG// connector on the AFC board. Connect the plug so that the flat cable is pointing in the direction of the FMC connector. +
- +
-Program the device via: +
- +
-''%%lpcxpresso/bin/dfu-util -d 0x0471:0xdf55 -c 0 -t 2048 -R -D lpcxpresso/bin/LPCXpressoWIN.enc%%'' +
- +
-''%%sudo lpcxpresso/bin/crt_emu_cm3_nxp -pLPC1768 -g -wire=winusb -load-base=0 -flash-load-exec=<path to firmware binary>%%'' +
- +
-You can find the openMMC firmware binary under ''%%firmware/openMMC-full-afc-bpm-v1.4.0.bin%%'' in the //Cryring_BPM_Gateware// Git repository. +
- +
-==== 11.4.3 Differences in the MMC firmwares of Creotech and LNLS ==== +
- +
-LNLS’s OpenMMC firmware routes a 100 MHz clock to the PCIe reference clock input, whereas Creotech’s MMC firmware routes a 125 MHz clock to this pin. The frequency of //sys_clk// is 125 MHz for both. +
- +
-The OpenMMC firmware should forward the signal of the reset button on the AFC front panel to the FPGA pin AG26 after some seconds. However, no reaction can be observed on this pin. It is unclear if or how Creotechs MMC firmware handles reset button actions, since there is no observable reaction. +
- +
-The current gateware is functional with the OpenMMC firmware. For running it together with Creotech’s MMC firmware, the PCIe reference clock frequency in the IP //pcie_dma_ip// has to be changed to 125 MHz. +
- +
-===== 11.5 Configuration of the timing receiver ===== +
- +
-The timing receiver is connected to the AFC boards via eight differential MLVDS lines via the backplane of the MicroTCA crate. By default, the gateware is configured to use the first MLVDS line as an input for the gate signal. +
- +
-The GPIOs of the timing receiver can be controlled via command line commands available in the network boot image of the CPU unit: +
- +
-  * start saft daemon: ''%%saftd tr0:dev/wbm0%%'' +
-  * display all available GPIOs: ''%%saft-io-ctl tr0 -i%%'' +
-  * enable the outputs to the backplane: ''%%saft-io-ctl tr0 -n V_MTCA4B_EN -q 1%%'' +
-  * display the properties of a single GPIO: e.g. ''%%saft-io-ctl tr0 -n MTCA4_IO1%%'' +
-  * enable the output of a single GPIO: e.g. ''%%saft-io-ctl tr0 -n MTCA4_IO1 -o 1%%'' +
-  * drive the output of a single GPIO high: e.g. ''%%saft-io-ctl tr0 -n MTCA4_IO1 -d 1%%'' +
- +
-====== 12 Hardware properties ====== +
- +
-===== 12.1 LEDs on the AFC and FMC front panels ===== +
- +
-==== 12.1.1 LEDs driven by the FPGA gateware ==== +
- +
-There are three tricolor LEDs connected to FPGA pins: +
- +
-  * //L3// in the center of the AFC front panel:\\ +
-Currently displays the PCIe reference clock divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_326299be.png?nolink&0x21}} in white. +
-  * //LD1// (v1.0) or //STATUS// (v1.2 and v2.3) on the right of the two FMC board’s front panels:\\ +
-Currently display the ADC clock frequencies divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_326299be.png?nolink&0x21}} in green if the PLLs indicate a lock, otherwise red. +
- +
-Each tricolor LED consists of three independent LEDs (red, green and blue). +
- +
-==== 12.1.2 LEDs driven by the MMC ==== +
- +
-  * In Service (//L1//), green +
-  * Alarm (//L2//), red +
-  * Hot Swap (//HS//), blue +
- +
-=== Lighting patterns of the Hot Swap LED === +
- +
-Insertion of an AFC board: +
- +
-^**event**                                   ^**Hot Swap Handle**  ^**Hot Swap LED**  ^ +
-|AMC inserted into chassis with handle open  |Open                 |On                | +
-|AMC handle closed                           |Closed               |Blinks            | +
-|Activation granted and AMC powers up        |Closed               |Off               | +
- +
-Source: [[#15_references|[13]]] +
- +
-Removal of an AFC board: +
- +
-^**event**                                                          ^**Hot Swap Handle**  ^**Hot Swap LED**  ^ +
-|AMC handle pulled open                                             |Open                 |Blinks            | +
-|Deactivation granted and AMC powers down (AMC can now be removed)  |Open                 |On                | +
- +
-Source: [[#15_references|[13]]] +
- +
-===== 12.2 MCH PCIe status LEDs ===== +
- +
-The lighting patterns of the PCIe status LEDs on the MCH show the link status and the link speed of the PCIe connections: +
- +
-^**LED state**  ^**meaning**   ^ +
-|off            |no PCIe link  | +
-|1 blink/sec    |2.5 GBaud     | +
-|2 blinks/sec   |5 GBaud       | +
-|on             |8 GBaud       | +
- +
-Source: [[#15_references|[14]]] +
- +
-===== 12.3 Differences between hardware versions ===== +
- +
-==== 12.3.1 Differences between AFC version 2.0 and AFC version 3.1 ==== +
- +
-In AFC version 2.0 the FPGA’s four PCIe lanes are connected to the upper four of the eight AMC PCIe lanes, whereas they are connected to the lower four lanes in AFC version 3.1. This also affects the necessary settings of the MCH, see [[#112_configuration_of_the_mch|chapter 11.2]]. +
- +
-Version 2.0 carries a Micron MT25QL128 128 MiBits Flash memory as a bitstream storage. Version 3.1 uses a Micron MT25QL256 256 MiBits Flash memory. +
- +
-Both boards carry 2 GiBytes of DDR3-SDRAM, divided in four modules of 512 MiBytes each. The SDRAM model can be determined via the FBGA code printed on the modules using the Micron part decoder webpage [[#15_references|[15]]]. +
- +
-=== AFC version 2.0 === +
- +
-  * FBGA code: D9PBC, translates to Micron MT41J512M8RA-125:+
-  * operates at 1.5 V +
- +
-=== AFC version 3.1 === +
- +
-  * FBGA code: D9QBV, translates to Micron MT41K512M8RH-125 IT:E +
-  * compatible to older MT41J family, operates at 1.5 V or 1.35 V +
- +
-==== 12.3.2 Differences between FMC ADC 250 M 16B 4CH versions ==== +
- +
-The //LD1// (v1.0) or //STATUS// (v1.2 and v2.3) LED on the right of the FMC board front panel is connected differently between v1.0 and (v1.2 and v2.3). When using the location constraints for v1.2 and v2.3 together with a v1.0 board, the LED lights as follows: +
- +
-  * wanted red off +
-  * wanted green lights green +
-  * wanted blue lights red +
- +
-Also, the MMCX input //TRIG// seems to be connected differently on v1.0. Feeding HF-Pulses into v1.0 boards does not work with the current bitstream. +
- +
-===== 12.4 Maximum achievable data rate to and from SDRAM ===== +
- +
-The gross data rate of the SDRAM interface is 800 MT/s with 32 bits/transfer, resulting in a theoretical gross data rate of 3.2 GiBytes/s. The maximum achievable data rate is limited by concurrent read and write accesses and by SDRAM refresh cycles. +
- +
-The storage of the samples of all eight ADCs in parallel at a sampling rate of 125 MHz results in a write data rate of: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/math_a53f595d.png?nolink&0x25}} +
- +
-The SDRAM capacity of 2 GiBytes would be sufficient to store the stream data of all eight ADCs for 1.07 seconds. +
- +
-===== 12.5 Analog characteristics ===== +
- +
-==== 12.5.1 ADC input filter ==== +
- +
-The FMC ADC boards were originally designed for very high input frequencies and are equipped with input filters that show a pronounced high pass characteristic. There are different versions of the boards which have a different ADC input filter circuitry. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:ADC_input_filter_v1_0_and_v1_2_schematics.png| Schematics of the original ADC input filter of versions 1.0 and 1.2. Image taken from [[#15_references|[16]]]}} +
- +
-**Figure 12.1:** Schematics of the original ADC input filter of versions 1.0 and 1.2. Image taken from [[#15_references|[16]]] +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:ADC_input_filter_v2_3_schematics.png| Schematics of the original ADC input filter of version 2.3. Image taken from [[#15_references|[17]]]}} +
- +
-**Figure 12.2:** Schematics of the original ADC input filter of version 2.3. Image taken from [[#15_references|[17]]] +
- +
-The part labeled //TR1(B) BD0205F5050A00// is a balun with an operating range of 70 - 1000 MHz [[#15_references|[18]]]. Lower frequencies are severely attenuated. +
- +
-For being able to use the FMC ADC boards in the Cryring BPM system, the baluns have to be replaced by more suitable components. +
- +
-Two approaches have been implemented on versions 1.0 and 1.2 (probably by Piotr Miedzik): +
- +
-  - each balun is replaced by two wires +
-  - each balun is replaced by two capacitors of probably 100 nF (hint in an old email) +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:ADC_input_filter_v1_2_balun_replaced_by_capacitors.jpg| v1.2 ADC input filter: balun //TR1B// replaced by two capacitors}} +
- +
-**Figure 12.3:** v1.2 ADC input filter: balun //TR1B// replaced by two capacitors +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:ADC_input_filter_v1_0_balun_replaced_by_wires.jpg| v1.0 ADC input filter: balun //TR1B// replaced by two wires}} +
- +
-**Figure 12.4:** v1.0 ADC input filter: balun //TR1B// replaced by two wires +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:ADC_input_filter_v2_3_original.jpg| Original v2.3 ADC input filter}} +
- +
-**Figure 12.5:** Original v2.3 ADC input filter +
- +
-The heatspreader under the bottom of the FMC ADC board has to be unscrewed to access the baluns. +
- +
-There is a significant difference in the ADC input filter circuitry between versions 1.and 1.2 and version 2.3. In version 2.3 the transmission line transformers //L11 {A, B, C, D}// have been removed and the RC filter has been modified. +
- +
-Figure 12.6 shows the magnitude frequency responses of the original v2.3 input filter and of the two modifications of the v1.0 and v1.2 input filters. The diagram data was created by using sine signal from a signal generator with an amplitude of 2 {{:ds:projects:cryring:bpm:gateware:documentation:/math_1f363008.png?nolink&0x24}} and by measuring the maximum amplitude swing of the raw ADC data. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FMC_ADC_magnitude_frequency_response.png| Magnitude frequency responses of different ADC input filters}} +
- +
-**Figure 12.6:** Magnitude frequency responses of different ADC input filters +
- +
-===== 12.6 Required changes for PLL lock ===== +
- +
-For being able to drive the reference clock of the PLLs on the FMC ADC boards from an FPGA output pin, a pullup resistor indicating the clock direction has to be desoldered. The resistor is labeled //R132// in the FMC ADC schematic [[#15_references|[17]]]. Figure 12.7 shows the location of the resistor. +
- +
-Without this change slight clock frequency differences between the processing clock on the AFC board and the ADC clocks on the FMC boards occur. There are synchronization FIFOs which ensure correct clock domain crossings, but in this case a small fraction of ADC samples might have to be discarded or repeated once, depending on which frequency is higher. This will always affect all the samples of a FMC board in parallel, so that no differences between the two input data streams of a single BPM will occur and no measurable effect on the BPM results should be observed. +
- +
-With this changes applied and with the correct settings of the PLL, the ADC samples of both FMC boards will arrive exactly in parallel and no samples will be lost or repeated. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:FMC_ADC_resistor_to_remove.jpg| Pullup resistor which needs to be removed for the PLL to lock}} +
- +
-**Figure 12.7:** Pullup resistor which needs to be removed for the PLL to lock +
- +
-===== 12.7 List of AFC v3.1 boards ===== +
- +
-^**AFC serial number**  ^**FPGA serial number**  ^**MMC firmware**             ^**bitstream in Flash memory**  ^**FMCs**                              ^**location**         ^ +
-|111154                 |0x004ACC24235885C       |openMMC-full-afc-bpm-v1.4.0  |Cryring BPM                    |none                                  |ask René Geißler     | +
-|191087                 |0x004D5C242358854       |openMMC-full-afc-bpm-v1.4.0  |?                              |?                                     |ask Vaibhav Jain     | +
-|240030                 |0x078D5C24235885C       |openMMC-full-afc-bpm-v1.4.0  |Cryring BPM                    |2 x FMC ADC 250M 16b 4ch v2.3         |ask René Geißler     | +
-|260046                 |?                       |openMMC-full-afc-bpm-v1.4.0  |LNLS RT DAQ                    |none, power supply damaged            |Creotech             | +
-|261056                 |0x068D5C24235885C       |openMMC patched              |UNIMON                         |2 x FMC ADC 5M 16b 20ch               |ask René Geißler     | +
-|290148                 |0x058D5C24235885C       |openMMC-full-afc-bpm-v1.4.0  |LNLS RT DAQ                    |2 x FMC ADC 100M 14b 4ch v5           |ask Harald Bräuning +
-|001011                 |0x048A82110D1B05C       |openMMC patched              |Cryring BPM                    |2 x FMC ADC 250M 16b 4ch v1.0 & v1.2  |Cryring container    | +
-|004069                 |0x008182110D1B05C       |openMMC patched              |Cryring BPM                    |none                                  |Cryring container    | +
-|013227                 |0x010A82110D1B05C       |openMMC patched              |Cryring BPM                    |none                                  |Cryring container    | +
-|032211                 |0x068B48160E47054       |openMMC patched              |Cryring BPM                    |none                                  |Cryring container    | +
-|035233                 |0x054B48160E47054       |openMMC patched              |Cryring BPM                    |none                                  |Cryring container    | +
- +
-The FPGA serial number is not printed anywhere, but can only be read from the DNA_PORT primitive by the gateware. In this gateware the FPGA serial number is read out and stored in a register (see [[#622_status_registers|chapter 6.2.2]]). +
- +
-===== 12.8 List of AFC v2.0 boards ===== +
- +
-^**AFC serial number**  ^**FPGA serial number**  ^**MMC firmware**  ^**bitstream in Flash memory**  ^**FMCs**                            ^**location**      ^ +
-|?                      |0x00408C8522C3004       |Creotech          |Cryring BPM                    |none, connector said to be damaged  |ask René Geißler +
- +
-===== 12.9 Productive setup ===== +
- +
-The following boards are installed in the productive setup in the Cryring container: +
- +
-^**AFC number**  ^**FPGA serial number**  ^  **number of FMCs**  ^  **AMC slot**^ +
-|1               |0x048A82110D1B05C                2                       2| +
-|2               |0x008182110D1B05C                2                       3| +
-|3               |0x010A82110D1B05C                1                       4| +
-|4               |0x068B48160E47054                2                       5| +
-|5               |0x018D5C24235885C                2                       6| +
- +
-The signal cables are connected as follows: +
- +
-^**signal**  ^  **AFC number**  ^  **FMC number**  ^  **port number** +
-|YR2DX1HL    |        1                1                         | +
-|YR2DX1HR    |        1                1                         | +
-|YR2DX2VO    |        1                1                         | +
-|YR2DX2VU    |        1                1                         | +
-|YR10DX1HL          1                2                         | +
-|YR10DX1HR          1                2                         | +
-|YR10DX2VO          1                2                         | +
-|YR10DX2VU          1                2                         | +
-|YR3DX3VO    |        2                1                         | +
-|YR3DX3VU    |        2                1                         | +
-|YR3DX4HL    |        2                1                         | +
-|YR3DX4HR    |        2                1                         | +
-|YR12DX1HL          2                2                         | +
-|YR12DX1HR          2                2                         | +
-|YR12DX2VO          2                2                         | +
-|YR12DX2VU          2                2                         | +
-|YR7DX1HL    |        3                1                         | +
-|YR7DX1HR    |        3                1                         | +
-|YR7DX2VO    |        3                1                         | +
-|YR7DX2VU    |        3                1                         | +
-|YR3DX1HL    |        4                1                         | +
-|YR3DX1HR    |        4                1                         | +
-|YR3DX2VO    |        4                1                         | +
-|YR3DX2VU    |        4                1                         | +
-|YR8DX1HL    |        4                2                         | +
-|YR8DX1HR    |        4                2                         | +
-|YR8DX2VO    |        4                2                         | +
-|YR8DX2VU    |        4                2                         | +
-|YR6DX1HL    |        5                1                         | +
-|YR6DX1HR    |        5                1                         | +
-|YR6DX2VO    |        5                1                         | +
-|YR6DX2VU    |        5                1                         | +
-|YR11DX1HL          5                2                         | +
-|YR11DX1HR          5                2                         | +
-|YR11DX2VO          5                2                         | +
-|YR11DX2VU          5                2                         | +
- +
-====== 13 Test coverage ====== +
- +
-===== 13.1 BPM algorithm ===== +
- +
-==== 13.1.1 Simulation ==== +
- +
-This test simulates the VHDL code of the gateware and is automatically run by the CI/CD pipelines of Gitlab. +
- +
-All ADC data inputs are driven by the same repeated pattern of positive and negative values, but with different amplitudes. +
- +
-For the same patterns on both inputs of a BPM with the amplitudes {{:ds:projects:cryring:bpm:gateware:documentation:/math_b09bb11b.png?nolink&0x21}} and {{:ds:projects:cryring:bpm:gateware:documentation:/math_86684571.png?nolink&0x21}}, +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/math_61cf3adf.png?nolink&0x21}} can be expressed as {{:ds:projects:cryring:bpm:gateware:documentation:/math_25bf9959.png?nolink&0x16}} with {{:ds:projects:cryring:bpm:gateware:documentation:/math_a49fed8f.png?nolink&0x31}} +
- +
-and equation 4.1 simplifies to: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/equation_7d8f7e17.png?nolink&0x50}} +
- +
-**Equation 13.1:** equally_shaped_signal_bpm_result +
- +
-so that the expected BPM result can be calculated as: +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:/math_e816f738.png?nolink&0x31}} +
- +
-^  **BPM**^  **ADC**^  **relative amplitudes {{:ds:projects:cryring:bpm:gateware:documentation:/math_b09bb11b.png?nolink&0x21}}, {{:ds:projects:cryring:bpm:gateware:documentation:/math_86684571.png?nolink&0x21}}**^  **expected BPM result**^  **simulated BPM result**^ +
-|        0|        0|                                         1|                 10922.67|                     10922| +
-|                1|                                       1/2|                                                  | +
-|        1|        2|                                       1/2|                -10922.67|                    -10923| +
-|                3|                                         1|                                                  | +
-|        2|        4|                                         1|                        0|                         0| +
-|                5|                                         1|                                                  | +
-|        3|        6|                                         1|                 25486.22|                     25487| +
-|                7|                                       1/8|                                                  | +
- +
-The simulation results are consistent with the expectations considering possible numeric calculation deviations in the numerous calculation steps, which might influence the least significant bits. +
- +
-==== 13.1.2 Using a function generator as data source ==== +
- +
-=== Digital gain setting === +
- +
-The following measurement was made using a function generator which was configured to output two phase aligned sines with an amplitude of {{:ds:projects:cryring:bpm:gateware:documentation:/math_1b43d523.png?nolink&0x24}} which were connected to the two inputs of a BPM. +
- +
-The linear regression length and the averaging length were both set to 1024. +
- +
-Before starting the measurement, the digital gain of one of the two ADC inputs was corrected so that the BPM averaging result equaled 0. +
- +
-After that, the digital gain correction of the other ADC input was used to set different amplitudes in order to avoid possible nonlinearities of the function generator gain. +
- +
-The results were read from the FPGA Observer GUI which displays the BPM results divided by {{:ds:projects:cryring:bpm:gateware:documentation:/math_ffca8a11.png?nolink&0x21}}. +
- +
-^  **relative amplitude**^  **expected BPM result**^  **measured BPM result**^ +
-|                     1/8|       0.{{:ds:projects:cryring:bpm:gateware:documentation:/math_316d3cea.png?nolink&0x21}}|                    0.778| +
-|                     2/8|                      0.6|                    0.600| +
-|                     3/8|      0.{{:ds:projects:cryring:bpm:gateware:documentation:/math_50440082.png?nolink&0x21}}|                    0.454| +
-|                     4/8|       0.{{:ds:projects:cryring:bpm:gateware:documentation:/math_ccce9f9d.png?nolink&0x21}}|                    0.333| +
-|                     5/8|                   0.2308|                    0.230| +
-|                     6/8|                   0.1429|                    0.142| +
-|                     7/8|      0.0{{:ds:projects:cryring:bpm:gateware:documentation:/math_403698e3.png?nolink&0x21}}|                    0.066| +
-|                     8/8|                        0|                    0.000| +
- +
-The measurement results are consistent with the expectations considering noise and possible numeric calculation deviations in the numerous calculation steps, which might influence the least significant bits. +
- +
-===== 13.2 Reliability tests ===== +
- +
-A test of the BPM scope and the BPM averaging scope was run overnight. The two inputs of a BPM were fed by two function generator outputs with the following settings: +
- +
-  * sine signal +
-  * frequency: 1 MHz +
-  * output to ADC0: 2.001 {{:ds:projects:cryring:bpm:gateware:documentation:/math_1f363008.png?nolink&0x24}} +
-  * output to ADC1: 0.667 {{:ds:projects:cryring:bpm:gateware:documentation:/math_1f363008.png?nolink&0x24}} +
- +
-According to equation 13.1, the expected BPM result for the chosen input amplitudes is 0.5. +
- +
-The test was run for 12 hours, during which the scopes were read continuously and histograms of the occurring results were created. +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:bpm_result_histogram.png| BPM result histogram}} +
- +
-**Figure 13.1:** BPM result histogram +
- +
-The gateware was configured as follows: +
- +
-  * ADC1 gain correction: 0x8398 BPM averaging result = 0.5 +
-  * linear regression length: 1024 +
-  * averaging length: 1024 +
-  * number of samples per capture: 1024 +
- +
-{{:ds:projects:cryring:bpm:gateware:documentation:bpm_averaging_result_histogram.png| BPM averaging result histogram}} +
- +
-**Figure 13.2:** BPM averaging result histogram +
- +
-The resulting histograms do not show Gaussian distributions, but still seem to be reasonably confined. The deviations from Gaussian distributions might have been caused by temperature shifts during the night which might have affected the amplitudes. +
- +
-====== 14 System limitations ====== +
- +
-===== 14.1 CPU unit reboot ===== +
- +
-The FPGA bitstreams have to be loaded before the CPU unit boots, otherwise the PCIe driver will not detect the FPGAs. This can be ensured by setting suitable power up delays in the MCH (see [[#1121_via_the_mchs_web_interface|chapter 11.2.1]]). +
- +
-Whenever a new bitstream is loaded to a FPGA, the CPU unit has to be rebooted either via its Hot Swap Handle or remotely via the MCH (see [[#92_remote_power_cycling_of_the_cpu_unit|chapter 9.2]]). An operating system reboot does not work. +
- +
-====== 15 References ====== +
- +
-[1] A. Reiter, R. Singh: Comparison of beam position calculation methods for application in digital acquisition systems. //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment//, February 2018, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_Algorithm.pdf +
- +
-[2] P. Miedzik, H. Bräuning, T. Hoffmann, A. Reiter, R. Singh: A MicroTCA based beam position monitoring system at CRYRING@ESR. //16th Int. Conf. on Accelerator and Large Experimental Control Systems, Barcelona, Spain//, October 2017, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Paper_BPM_architecture.pdf +
- +
-[3] A. Reiter, W. Kaufmann, R. Singh, P. Miedzik, T. Hoffmann, H. Bräuning: The CRYRING BPM cookbook, March 2015, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Cryring_BPM_System_Overview.pdf +
- +
-[4] AMC FMC Carrier (AFC) Git repository, Open Hardware Repository, https://ohwr.org/project/afc/wikis/home +
- +
-[5] Xilinx: 7 Series FPGAs Data Sheet: Overview, https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf +
- +
-[6] Silicon Labs: Timing part decoder web page, https://www.silabs.com/timing/lookup-customize +
- +
-[7] Silicon Labs: Si571 datasheet, https://www.silabs.com/documents/public/data-sheets/si570.pdf +
- +
-[8] Analog Devices: AD9510 datasheet, https://www.analog.com/media/en/technical-documentation/data-sheets/AD9510.pdf +
- +
-[9] Renesas: ISLA216P datasheet, https://www.renesas.com/us/en/www/doc/datasheet/isla216p.pdf +
- +
-[10] Xilinx: Artix 7 datasheet: DC and AC Switching Characteristics, https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf +
- +
-[11] AFC v3.1 schematics, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_AFC_v3.1.pdf +
- +
-[12] NXP: LPCxpresso download web page, https://www.nxp.com/design/microcontrollers-developer-resources/lpc-microcontroller-utilities/lpcxpresso-ide-v8-2-2:LPCXPRESSO +
- +
-[13] NXP: AMC documentation, https://www.nxp.com/docs/en/reference-manual/MSC8156AMCUM.pdf +
- +
-[14] NAT GmbH: MCH technical reference manual, https://www.nateurope.com/manuals/nat_mch_pciex48_v2x_man_hw.pdf +
- +
-[15] Micron: FBGA and Component Marking Decoder, https://www.micron.com/support/tools-and-utilities/fbga +
- +
-[16] FMC ADC 250M 16B 4ch v1.2 schematics, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Schematics_FMC_ADC_250M_16B_4ch_v1_2.pdf+
  
-[17] FMC ADC 250M 16B 4ch v2.3 schematics, https://github.com/lnls-dig/fmc250-hw/blob/master/circuit_board/ADC.SchDoc+===== 6 References =====
  
-[18Anaren: Balun BD0205F5050A00 datasheet, https://git.gsi.de/BEA_HDL/datasheets/-/blob/master/Balun_BD0205F5050A00_datasheet.pdf+[1Analog Devices LTC2323-16 datasheet, https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/AD_LTC2323_ADC_datasheet.pdf
  
 +[2] IOxOS ADC_3117 datasheet, https://git.gsi.de/BEA_HDL/UniMon_Gateware/-/blob/master/doc/datasheets/ADC_3117_UG.pdf
ds/projects/unimon/gateware.1626811411.txt.gz · Last modified: 2021/07/20 22:03 by rgeissler