HITRAP Low Energy Diagnostics and Emittance Measurement

Jochen Pfister\(^1\), Oliver Kester\(^2\), Ulrich Ratzinger\(^1\), Gleb Vorobjev\(^3\)

\(^1\)Institut für Angewandte Physik, JW Goethe-University Frankfurt, Germany
\(^2\)NCSL/MSU, East Lansing, USA
\(^3\)GSI, Darmstadt, Germany

Workshop on "Low Current, low Energy Beam Diagnostics"
Großsachsen, November 24, 2009
Outline

• The HITRAP project at GSI
• Existing beam diagnostics for emittance measurements and particle detection
• Measurements and results
• Outlook
HITRAP @ ESR

Beam Diagnostics

Measurements

Outlook

- **HITRAP LINAC** ~20 m long
- **UNILAC**
- **ESR**
- **SIS 18**
- **ion sources**

- 4-400 MeV/u U^{92+}
- 11.4 MeV/u U^{73+}
- Up to 1 GeV/u U^{92+}

J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt
HITRAP overview

HITRAP Beam Diagnostics Measurements Outlook

DDB section
IH section & MEBT
LEBT & Cooler trap

7m
4meV/u

to experiments

J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt
Experiments @ HITRAP

• Experiments based on Penning traps
 – Laser spectroscopy
 – g-factor measurements of the bound electron
 – Mass measurements of extreme accuracy
 – Polarization of radionuclides
 – Decay spectroscopy of highly-charged radionuclides

• Collision experiments:
 – Collisions at very low velocities
 – Surface studies and hollow-atom spectroscopy
 – X-ray spectroscopy
Low energy/low intensity pepperpot device

- stand-alone device
- multi diagnostic

Pepperpot data:
- hole diameter: 0,1mm (0,1mm W foil)
- hole spacing: 1mm
- drift distance: 31,8mm
- sandwiched between Al frame and 2mm Cu plate
Low energy/low intensity pepperpot device

- stand-alone device
- multi diagnostic

MCP data:
- diameter: 40mm
- channel diameter: 12µm
- gain: 10^4
- scintillator: P-43 ($\lambda_{\text{max}}=545\text{nm}$)
- afterglow (10%): 1ms

Camera: resolution: 1392x1040 pixels \rightarrow ~40µm spatial resolution

Lens: fixed focus $f=50\text{mm}$, high quality with narrow band pass filter with $\lambda_{\text{max}}@545\text{nm}$
Low energy/low intensity pepper pot device
Diamond detector

HITRAP Beam Diagnostics Measurements Outlook
Pepperpot Diamond Energy Analysis

4 different separate diamond layers:
- poly-crystalline CVD 10/15µm
- single-crystal CVD 480/380µm
- poly-crystalline CVD 15µm
- poly-crystalline CVD 600µm
(diameter: 3mm each)
New Energy Analyzer

- 0.3mm slit
- 0.5T permanent magnet
- MCP (chevron type)
- SONY CCD camera
 - 1034x779px
 - 4.65x4.65 µm pixel size

HITRAP Beam Diagnostics Measurements Outlook
Pepperpot Diamond Energy Analysis
New Energy Analyzer

HITRAP Beam Diagnostics Measurements Outlook
Pepperpot Diamond Energy Analysis

camera
viewport
MCP
dipole
New Energy Analyzer

Homogeneous field on magnet axis measured with hall probe

Drift distance between magnetic field edge and MCP: 95mm

Redidual field on axis if magnet out: <1 gauss
Bunch shape measurement

HITRAP Beam Diagnostics Measurements Outlook

macro bunch: 1-3µs from ESR or
micro-structured: 108MHz (measured) / 370ps (not resolved)
Diamond detector

Diamond detector: beam is bunched!

9.2 ns
Phase probes

Bunched beam detected with phase probe in front of IH-structure

Phase probes

HITRAP Beam Diagnostics Measurements Outlook
IH commissioning in 2008/2009

HITRAP Beam Diagnostics Measurements Outlook

$\varepsilon_{90\%} = 9,2 \pi \text{ mm mrad}$

4MeV/u 0.5MeV/u
no signal of 0.5MeV/u beam on either YAG scintillator or P-43 for 3-gradient method or pepperpot measurement

→ 3-gradient method via profile measurements using diamond detector (vertical direction only!)
varying gradient of quadrupole doublet 5 behind IH structure

51.2 T/m

57.6 T/m

64 T/m
0.5MeV/u emittance

independent evaluation in MS EXCEL and MATLAB shows exactly same result

design value at this point: 9,2 \(\pi \) mm mrad

\[
\begin{align*}
\varepsilon_{y,kv} &= 9,3 \pi \text{ mm mrad} \\
\alpha &= 1,15 \\
\beta &= 7,80 \text{ mm/mrad} \\
\gamma &= 0,30 \text{ mrad/mm}
\end{align*}
\]
First test of MCP-Pepperpot-Emittance Meter

HITRAP Beam Diagnostics Measurements Outlook

3-gradient method Pepperpot

- Measurement behind RFQ (LEBT)
- Energy mixture: $4\text{MeV/u} > E > 6\text{keV/u}$
Outlook

• MCP-based energy analysis tests ongoing

• tune IH-structure based on energy distribution measurements (1)(spring 2010)

• energy analysis behind RFQ (2) and low energy emittance measurements (3)
Thank you for your attention!

and thanks to: C. Andre, P. Forck, T. Hofmann, D. Liakin, F. Herfurth, O. Kester, G. Vorobjev, U. Ratzinger
and everybody that I forgot