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Schottky noise analysis

A beam is composed by a finite number of particles.
Schottky noise is based on the statistical fluctuations of this finite charge
carriers.

Schottky noise is treated in the frequency domain:
−→ The sensitive device of a spectrum analyzer is used.

Modern applications: Fourier transformation of time domain data.

It is applicated at proton or heavy ion synchrotrons for:

• Measurement of momentum distribution ∆p/p
−→ longitudinal Schottky

• Measurement of tune Q, chromaticity ξ and transverse emittance ǫ
−→ transverse Schottky
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Spectrum analyzer

A spectrum analyzer is used to determine the amplitude of a frequency component of a
time varying signal −→ analog equivalent to a digital Fourier transformation.
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• input signal is lowpass filtered: fcut up to 3 GHz
• mixing with a scanned voltage controlled oscillator (typically 3 to 6 GHz)
• Schottky scan: typical span 10 to 100 kHz around 10 MHz, sweep time 0.1 to 1 s
• difference frequency is bandpass filtered (ty. 100 Hz) and rectified
• amplitude as a function of frequency is displayed
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Longitudinal Schottky signals for a single particle

Consider one particle with charge ζe, rev. time T0 and period f0 = 1/T0:

I(t) = ζef0

∞
∑

h=1

δ(t− hT0) = ζe
∞
∑

h=−∞
e2πihf0t

A real detector measures only positive frequencies:

I(t) = ζef0 + 2ζef0

∞
∑

h=1

cos (2πhf0t)

=⇒ Fourier transformation I(f) = ζef0 · δ(0) + 2ζef0

∞
∑

k=1

δ(f − kf0)
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Longitudinal Schottky signals for a coasting beam

For N particles randomly distributed (de-bunched) along the
synchrotron at angle θn the current is

I(t) =
N
∑

n=1

ζef0 cos θn + 2ζef0

N
∑

n=1

∞
∑

h=1

cos (2πhfnt + hθn)

The power density per band at rev. harmonics h is the rms value 〈I2〉.
Only the dc-part remains, all other cancel due to the averaging:

〈I2〉 =

(

2ζef0

N
∑

n=1

cos hθn

)2

= (2ζef0)
2 · (cos hθ1 + ... + cos hθN)2

= (2ζef0)
2 ·N/2 = I2

rms

Power per band determined by a pick-up with transfer impedance Zt:

P (f) = Zt · I2

rms/∆f = Zt · (ζef0)
2 · 2N/∆f.

Fulfilled condition: tscan ≫ T0, more precisely: resolution BW ∆fres ≪ f0 = 1/T0
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General longitudinal Schottky spectrum

The power per band is: P (f) = Zt · I2

rms/∆f = Zt · (ζef0)
2 · 2N/∆f.

Measured quantity:
Spread in rev. freq. ∆fh/fh

=⇒ momentum distribution:

∆p

p
= −1

η
· ∆fh

fh

= −1

η
· ∆fh

hf0

For higher harmonics, ∆f increases
⇒ Schottky peaks become broader.
Simulation using ∆p/p = 1 % and
frequency dispersion (art. low)

η = 1/γ2

tr − 1/γ2 = −0.005
Overlapping for h > |η|/2 · p/∆p

Practical choice of the harmonics h:

Large values: Broader peaks ←→ higher resolution

Low values: Better signal-to-noise due to Unoise ∝
√

∆f

=⇒ harmonics 10 < h < 30 used (f0 ∼ 1 MHz at smaller heavy ion, p synchrotrons).
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Results of longitudinal Schottky scan

Control of longitudinal electron or stochastic cooling.
Example: Electron cooling of 300 MeV/u Ar18+ at GSI storage ring for harmonics 10

→ decrease of the ∆p/p from 1 · 10−3 to 2 · 10−5:
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Schottky pick-up at GSI synchrotron

In general it does not differ from a BPM; here 250 mm plate distance.
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Longitudinal Schottky signals for a bunched beam

The statistical fluctuations are modulated by the
synchrotron frequency fs for each particle: τn = τ̂n sin (2πfst + ϕn)

Modulation i.e. splitting of the long. peak according to:

Ih(t) = 2ζef0 ·Re

[

N
∑

n=1

∞
∑

p=−∞
Jp(hωnτ̂n) exp {i (hωnt + hθn + pωst + pϕn)}

]

The distance of peaks:
→ synchrotron frequency

fs ∝
√

Urf
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Transverse Schottky signals for a coasting beam

The difference signal of opposite
pick-ups are used.

The statistical fluctuations are
modulated by the
betatron oscillations:

xn(t) = An cos(2πqf0t + µn)

The dipole moment dn(t)
for one particle is
longitudinal noise ∝ cos (2πhf0t)

× betatron mod. ∝ cos (2πqf0t)

⇐⇒ frequency modulation

yielding:
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P(f)

frequency f/f0
h h+1

longitudinal Schottky

transverse Schottky
modulation

P(f)
betatron sidebands

frequency f/f
0

h
h+q

h+1h-1

h-1

h-q

frequency

dn(t) = ζef0 · An + ζef0 · An

∑∞
h=1

cos [2π(h− q)f0t] · cos [2π(h + q)f0t]
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Results for transverse Schottky scan → cooling

For N randomly distributed particles the rms power per band of
transverse Schottky is:

d2

rms = 〈d2〉
= (ζef0)

2 · A2

rms ·N/2

= (ζef0)
2 · ǫx · β(s) ·N/2

→ d2

rms ∝ ǫx (trans. emit.)
(i.e. integral of sideband)

Transverse Schottky:
∼ 1/100 smaller than longitudinal.

Absolute value of emittance:
Calibration necessary due to
unknown transverse
transfer impedance Z⊥(ω)

Transverse Schottky spectra recorded
every 80 ms during stochastic cooling
→ decrease of sidebands ⇔ trans. cooling
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Transverse Schottky scan → tune

The position of the sideband are given by the non-integer tune q.

Frequency modulation with

cos [2π(h± q)f0t]⇒

q = h · f
+
h − f−h

f+
h + f−h

⇒ direct tune
measurement

h = 30, 31: q = 0.3 sideband close, q = 0.7 interchanged.
Parameter: f0 = 1 MHz, ∆p/p = 2·10−3, η = −1, ξ = −1,
Q = 4.3 or 4.7.
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Transverse Schottky scan → chromaticity

The width of the sideband ∆f±h is related to the chromaticity ξ.
Frequency modulation with

cos [2π(h± q)f0t].

Position of sidebands:
f±

h
= (h± q)f0

and product role of derivative ⇒
∆f±

h
= ∆f0(h± q)±∆qf0

With ∆f/f = −η ·∆p/p

and ∆Q/Q = ∆q/q = ξ ·∆p/p

∆f−

h
= η

∆p

p
· f0

(

h− q +
ξ

η
Q

)

∆f+

h
= η

∆p

p
· f0

(

h + q − ξ

η
Q

)

The chromaticity ξ is determined
without beam excitation.

Parameter: f0 = 1 MHz, ∆p/p = 2 · 10−3, η = 1,
ξ = −1, Q = 4.3 or 4.7.
Care: The width of the sidebands differs!
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Some remarks to Schottky analysis

• Transverse Schottky for a bunched beam → sidebands are modulated due to
synchrotron oscillations → complex spectrum.

• The longitudinal spectrum can significantly deformed by observing cooled beams,
preventing the interpretation of the width as the momentum spread. For cold and
sufficient dense beams, the signal shows a splitting related to plasma waves.

• Signal enhancement with external resonator is possible for low currents like
anti-protons.
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