The beam width can be changed by focusing via quadruples.

- Transverse matching between ascending accelerators is done by focusing.
- \rightarrow Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions $\beta(s)$ and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s)\frac{\Delta p}{p}\right)^2 \text{ and } \sigma_y^2(s) = \varepsilon_y \beta_y(s)$$

LINACs: Lattice functions are 'smoothly' defined due to variable input emittance.

A great variety of devices are used:

Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e-), optical transition radiation (e-),

residual gas fluorescence monitors (protons), residual gas monitors (protons).

Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all) grids with gas amplification MWPC (protons)

Scintillation Screen

Particle's energy loss in matter produces light

 \rightarrow the most direct way of profile observation as used from the early days on!

Peter Forck, JUAS Archamps

Example of Screen based Beam Profile Measurement

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

Advantage of screens:

Direct 2-dim measurement
High spatial resolution
Cheap realization

Observation with a CCD camera with digital output or video & frame grabber.

Some materials and their basic properties:

Abbreviation	Material	Activator	max. emission	decay time
Quartz	$ m SiO_2$	none	optical	< 10 ns
	CsI	Tl	$550~\mathrm{nm}$	$1~\mu{ m s}$
Chromolux	Al_2O_3	Cr	$700 \ \mathrm{nm}$	$100 \mathrm{\ ms}$
YAG	$Y_3Al_5O_{12}$	Ce	$550~\mathrm{nm}$	$0.2~\mu{ m s}$
	Li glass	Ce	400 nm	$0.1~\mu{ m s}$
P11	ZnS	Ag	$450 \mathrm{~nm}$	$3 \mathrm{\ ms}$
P43	$\mathrm{Gd}_2\mathrm{O}_2\mathrm{S}$	Tb	$545 \ \mathrm{nm}$	$1 \mathrm{ms}$
P46	$Y_3Al_5O_{12}$	Ce	$530~\mathrm{nm}$	$0.3~\mu{ m s}$
P47	$Y_2Si_5O_5$	Ce, Tb	400 nm	$100 \ \mathrm{ns}$

Properties of a good scintillator:

- \blacktriangleright Large light output at optical wavelength \rightarrow standard CCD camera can be used
- \blacktriangleright Large dynamic range \rightarrow no deformation due to saturation or self-absorption
- > Short decay time \rightarrow observation of time variations
- \succ Radiation hardness → long lifetime
- → Good mechanical properties → typical size up to Ø 10 cm

(Phosphor Pxx grains of $\emptyset \sim 10 \ \mu m$ on glass or metal).

Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i \Rightarrow very large dynamic range up to 10⁶.

The Artist view of a SEM-Grid = Harp

The Faraday Cup is an award granded every second year for beam diagnostics inventions .

Peter Forck, JUAS Archamps

G 55 H

Properties of a SEM-Grid

Secondary e- emission from wire or ribbons, 10 to 100 per plane.

Diameter of the wires	0.05 to $0.5~\mathrm{mm}$	
Spacing	$0.5 \ {\rm to} \ 2 \ {\rm mm}$	
Length	$50 \ {\rm to} \ 100 \ {\rm mm}$	
Material	W or W-Re alloy	
Insulation of the frame	glass or Al_2O_3	
number of wires	10 to 100	
Max. power rating in vacuum	$1 \mathrm{W/mm}$	
Min. sensitivity of I/U-conv.	1 nA/V	
Dynamic range	$1:10^{6}$	
Number of ranges	10 typ.	
Integration time	$1 \ \mu s$ to $1 \ s$	

Typical specifications for a SEM-Grid used at the GSI-LINAC:

Care has to be taken to prevent over-heating by the energy loss! *Low energy beam:* Ratio of spacing/width: $\simeq 1$ mm/0.1mm = 10 \Rightarrow only 10 % loss. *High energy E_{kin} > 1 GeV/u*: thin ribbons of larger width are used

due to negligible energy loss.

Example of Profile Mesurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the ≈ 80 % transmission \Rightarrow frequently used instrument beam optimization: setting of quadrupoles, energy.... *Example: C⁶⁺ beam of 11.4 MeV/u at different location at GSI-LINAC*

Instead of several wires, *one* wire is scanned though the beam.

Fast pendulum scanner for synchrotrons; sometimes it is called *'flying wire'*:

Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature.

Thickness: down to 10 μ m \rightarrow high resolution.

Detection: Either the secondary current (like SEM-grid) or

high energy secondary particles (like beam loss monitor)

flying wire: only sec. particle detection due to induced current by movement.

Electron beam \rightarrow Bremsstrahlung photons.

The Artist View of a Wire Scanner

Purpose. The Fanaday Cup Award, donated by Bergez Instrumentation of Saint Genis, France, is intended to recognize and encourage innovative achievements in the field of accelerator beam instrumentation.

Award The award consists of a \$5000 prize and a certificate to be presented at the next US Beam Instrumentation Workshop which will be held at Fermi National Laboratory on May 1-4, 2006. Winners participating in the BIW will share a \$1,000 travel allowance. The selection of recipients is the responsibility of the BIW Organizing Committee

The Faraday Cup Award shall be presented for outstanding contribution to the development of an innovative beam diagnostics instrument of proven workability. The prize is only awarded for demonstrated device performance and published contribution.

Beam Dragnostic Instrument: A device to measure the peoplerities of charged elementary particle, atomic or simple notecular beams during or after acceleration, or the properties of neutral particle beams produced in an intermediate state of charged particle acceleration. The device may

- intermediate state or entryed particle acceleration. The new entry optime by detecting secondary beams of charged, neutral, massive or mass less particles. But its purpose should be to diagnose the primary charged particle beam. The mass of primary beam particles shall be no greater than the order of the primary particles and the second particle beam. The mass of primary beam particles shall be no greater than the order of the primary second particle beam particles and the primary second particles are particles.
- - 10.0 alomic mass units.

Delivered performance: The performance of the device should have been evaluated using a charged particle beam, ather than in a "bench top" demonstration Publication: A description of the device, its operating principle, and its performance should have been published in a journal or in the proceedings of a conference or workshop that is in the public domain. Laboratory design notes, internal technical notes, etc. do not qualify but may be submitted to support other publications. Full and open disclosure is necessary to the extent that a potential user could design a similar device. More than one article may be submitted (together) to satisfy this requirement, for example, an article describing the principle plus another article

describing the performance Displayer Nominations are open to candidates of any nationality for work done at any geographical location. There are no restrictions for candidates; however, in the event of deciding between works of similar quality, preference will be given to candidates in an early stage of their beam instrumentation career. The award may be shared between persons contributing to the same accomplishment. Once accepted by the Award Committee a nomination shall remain eligible for three successive competitions unless withdrawn by a condidate.

The Award Committee may release the names of entrants and a list of publications related to an entry if requested by a third party. Unpublished supporting material will not be disclosed nor will the names of persons supporting a nomination, Discussion regarding individual entries, scenng, etc. is regarded as confidential and will not be disclosed.

The nomination package shall include the name of the candidate, relevant publications, a statement outlining his her personal contribution and that of others, letters from two professional accelerator physicists, engineers or laboratory administrative personnel who are familiar with the device and its development. Two master copies of this package, suitable for copying, must be submitted not later than Oct. 14, 2005 to

Faraclay Cep Proposals - BIW06 Aun: Lisa Lopez Fermilab MS 308, P. O. Box 500 Hatavia, H. 60510, U.S.A.

Peter Forck, JUAS Archamps

Slow, linear Wire Scanner

Slow, linear scanner are used for:

 > low energy protons due to lack of sec. particles
 > high resolution measurements e.g. at e⁺-e⁻ colliders by de-convolution σ²_{beam}=σ²_{meas}-d²_{wire} ⇒ resolution down to µm can be reached
 > detection of beam halo.

Comparison between SEM-Grid and Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

 \rightarrow for pulsed LINACs precise synchronization is needed

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to $10 \ \mu m$)

 \rightarrow used for e--beams having small sizes (down to 10 µm)

Grid: Needs one electronics channel per wire

 \rightarrow expensive electronics and data acquistion

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

Ionization Profile Monitor

Peter Forck, JUAS Archamps

The realization of an IPM for the use at the GSI LINAC:

Vacuum pressure $p \approx 10^{-7}$ mbar and high current of $I \approx 1 \text{ mA} \Rightarrow$ no MCP required. Readout by strips fed to an I/U converter.

Multi Channel Plate MCP

MCP are used as particle detectors with secondary electron amplification.

A MCP is:

- > 1 mm glass plate with ≈10 μ m holes
- ➤ thin Cr-Ni layer on surface
- → voltage ≈ 1 kV/plate across
- \Rightarrow e⁻ amplification of $\approx 10^3$ per plate.
- \rightarrow resolution ≈ 0.1 mm (2 MCPs)

Anode technologies:

- > SEM-grid, ≈ 0.5 mm spacing
 - \rightarrow fast electronics readout
- ➢ phosphor screen + CCD
 - \rightarrow high resolution, but slow timing
 - \rightarrow fast readout by photo-multipliers
- \blacktriangleright single particle detection
 - \rightarrow for low beam current.

The beam emittance $\mathcal{E} = \int \rho(x, x') dx dx'$ is defined in the laboratory frame.

Non-intercepting ionization profile monitor is well suited for long time observations without beam disturbance \rightarrow mainly used at proton synchrotrons.

Parameter: U⁷³⁺, 10⁹ particles per 3 m bunch length, cooled beam with 2.5 mm FWHM.

Peter Forck, JUAS Archamps

G S II

Alternative: e⁻ detection in an external magnetic field

 \Rightarrow cyclotron radius $r_c = \sqrt{2m_e E_{kin,\perp}} / eB \Rightarrow r_c < 0.1 \text{ mm for } B = 0.1 \text{ T}$

 $E_{kin,\perp}$ given by atomic physics, 0.1 mm is internal resolution of MCP.

Time-of-flight: $\approx 1 \text{ ns} \Rightarrow 2 \text{ or } 3 \text{ cycles.}$

B-field: By dipole magnets with large aperture \rightarrow IPM is expensive device.

Beam Induced Fluorescence for intense Profiles

Large beam power \rightarrow Non-intercepting method: \Rightarrow Beam Induced Fluorescence BIF $N_2 + Ion \rightarrow (N_2^+)^* + Ion \rightarrow N_2^+ + \gamma + Ion$ With single photon detection scheme 390 nm< λ < 470 nm

 \Rightarrow non-destructive, compact installation.

Installation of hor&vert. BIF Monitor:

Peter Forck, JUAS Archamps

G 551

Beam Induced Fluorescence Monitor BIF: Image Intensifier

'Chevron' Multi-Channel-Plates

Image intensifier:

- ≻Photo cathode \rightarrow creation of photo-e⁻
- ➤accelerated to MCP for amplification
- ≻Detection of ampl. e⁻ by phosphor screen
- ≻Image recored by CCD
- \Rightarrow Low light amplification
 - (commercially used for night vision devices)

A BIF monitor consists of only:

- ➤ optics outside beam pipe
- ➤ image intensifier + camera

beam

residual gas $(+N_2)$

window

lens system

Intensifier

CCD camera

Image

- ➤ gas-inlet for pressure increase
- \Rightarrow nearly no installation inside vacuum. only LEDs for calibration
- \Rightarrow cheaper than IPM, but lower signal.

photon

Beam Induced Fluorescence Monitor BIF: Image Intensifier

'Single photon counting':

aver. pixel int. A BIF monitor consists of only:

Example at GSI-LINAC:

4.7 MeV/u Ar ¹⁰⁺ beam I=2.5 mA equals to 10^{11} particle *One single* macro pulse of 200 µs Vacuum pressure: p= 10^{-5} mbar (N₂)

➤ optics outside beam pipe

- ➤ image intensifier + camera
- ➤ gas-inlet for pressure increase
- \Rightarrow nearly no installation inside vacuum. only LEDs for calibration
- \Rightarrow cheaper than IPM, but lower signal.

Optical Transition Radiation OTR

Optical transition radiation is emitted by charged particle passage through a material boundary.

Electrodynamic field configuration

changes during the passage:

- \Rightarrow Polarization of the medium
- \Rightarrow emission of energy

Description by

classical electrodynamics & relativity:

$$\frac{d^2 W}{d\Omega d\omega} = \frac{\mu_0 c e^2}{4\pi^3} \cdot \frac{\theta^2}{\left(\gamma^{-2} + \theta^2\right)^2}$$

W: energy emitted in solid angle Ω

 θ angle of emission

 γ : Lorentz factor

 ω : angular frequency intervall $E_{ph}=2\pi h\omega$

- \succ Insertion of thin Al-foil under 45°
- ➢ Observation of low light by CCD.

Optical Transition Radiation: Angular Photon Distribution

 $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{\mu_0 c e^2}{4\hbar\pi^3} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^2}{\left(\gamma^{-2} + \theta^2\right)^2}$ Photon distribution within a solid angle $d\Omega$ and dN/dΩ [arb.u.] 8.0 8 Wavelength interval λ_{begin} to λ_{end} E=25 MeV $\gamma = 50$ E=100 MeV $\gamma = 2000 \text{ E} = 1000 \text{ MeV}$ \blacktriangleright Detection: Optical 400 nm < λ < 800 nm x100 using image intensified CCD x1000 distri. \blacktriangleright Larger signal for relativistic beam $\gamma >> 1$ 0.6 > Angular focusing for $\gamma >> 1$ 0.4 photon 0.2 \Rightarrow well suited for e⁻ beams \Rightarrow p-beam only for $E_{kin} > 10$ GeV ($\gamma > 10$) 0.0 -20-4020 0 40 radiation angle θ [mrad]

 \rightarrow *Profile* by focusing to screen

→*Beam angular distribution* by focusing on infinity

due to emission dependence on beam angular distribution.

OTR-Monitor: Technical Realization and Results

Example of realization at TERATRON:

► Insertion of foil

e.g. 5 µm Kapton coated with 0.1µm Al Advantage: thin foil \Rightarrow low heating & straggling

2-dim image visible

Results at FNAL-TEVATRON synchrotron

with 150 GeV proton Using fast camera: Turn-by-turn measurement

Peter Forck, JUAS Archamps

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process \rightarrow beam intensity linear to # photons

Scint. Screen: complex atomic process \rightarrow saturation possible

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

 \rightarrow minimization of beam scattering (Al is low Z-material)

Scint. Screen: thickness ~ 1 mm inorganic, fragile material, not radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons \rightarrow simple CCD sufficient

OTR: complex angular photon distribution \rightarrow resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: beam angular distribution measurable \rightarrow beam emittance

Scint. Screen: no information concerning the beam angular distribution

OTR: large γ needed \rightarrow e⁻-beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV **Scint. Screen:** for all beams

Synchrotron Light Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.

Realization of a Synchrotron Light Monitor

Extracting out of the beam's plane by a (cooled) mirror

- \rightarrow Focus to a slit + wavelength filter for optical wavelength
- \rightarrow Image intensified CCD camera

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV)

Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

FE 55 1

The Artist View of a Synchrotron Light Monitor

Diffraction Limit for a Synchrotron Light Monitor

A good resolution for:

 \triangleright large dipole bending radius ρ , **but** fixed by the accelerator

> short wavelength, **but** good optics only for $\lambda > 300$ nm

Synchrotron Light Monitor overcoming Diffraction Limit

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot \left(\lambda^2 / \rho\right)^{1/3}$

Possible improvements:

Shorter wavelength: Using x-rays and an aperture of Ø 1mm

 \rightarrow 'x-ray pin hole camera'.

> *Interference technique:* At optical wavelength using a double slit

Summery for Beam Profile

Different techniques are suited for different beam parameters:

e⁻-beam: typically Ø 0.3 to 3 mm, protons: typically Ø 3 to 30 mm

Intercepting \leftrightarrow non-intercepting methods

Direct observation of electrodynamics processes:

- Synchrotron radiation monitor: non-destructive, only for e⁻-beams, complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- Scintillation screen: destructive, large signal, simple, all beams
- Residual gas monitor: non-destructive, expensive, limited resolution, for protons
- Residual fluorescence monitor: non-destructive, limited signal strength, for protons

Wire based electronic methods:

- SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- ➤ Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.
- ➤ MWPC-grid: internal amplification, for low current proton-beam.