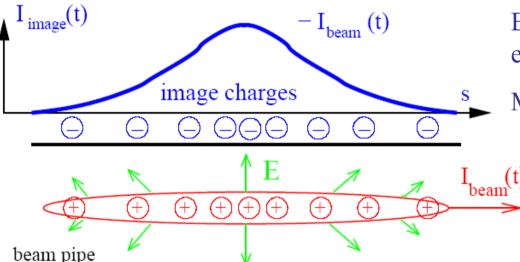
Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.



Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

➤ Signal treatment for capacitive pick-ups:

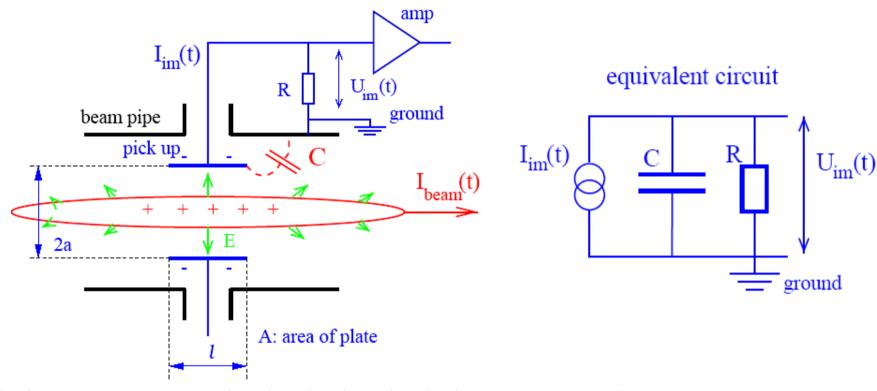
- ➤ Longitudinal bunch shape
- > Overview of processing electronics for Beam Position Monitor (BPM)

> Measurements:

- > Closed orbit determination
- > Tune and lattice function measurements (synchrotron only).

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:



The image current I_{im} at the plate is given by the beam current and geometry:

$$I_{im}(t) = -\frac{dQ_{im}(t)}{dt} = \frac{-A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{-A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega)$$

Using a relation for Fourier transformation: $I_{beam} = I_0 e^{-i\omega t} \Rightarrow dI_{beam}/dt = -i\omega I_{beam}$.

Transfer Impedance for a capacitive BPM

At a resistor R the voltage U_{im} from the image current is measured.

The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam}

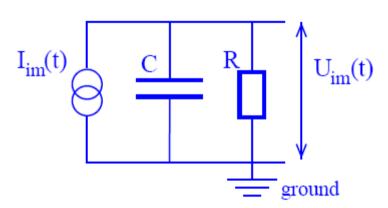
in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

- •The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable.
- •The amplifier with input resistor R.
- •The beam is a high-impedance current source:

$$\begin{split} U_{im} &= \frac{R}{1 + i\omega RC} \cdot I_{im} \\ &= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \\ &\equiv Z_{t}(\omega, \beta) \cdot I_{beam} \end{split}$$

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$



equivalent circuit

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_{t}| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^{2}/\omega_{cut}^{2}}} \qquad \text{e.s.}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

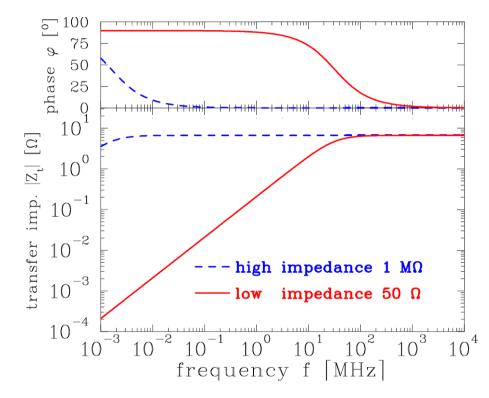
Parameter for shoe-box BPM:

$$C=100 \text{pF}, l=10 \text{cm}, \beta=50\%$$

$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$$

for
$$R=1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$



Large signal strength \rightarrow high impedance Smooth signal transmission \rightarrow 50 Ω

Signal Shape for capacitive BPMs: differentiated \(\rightarrow \text{proportional} \)

Depending on the frequency range *and* termination the signal looks different:

> High frequency range $\omega >> \omega_{cut}$:

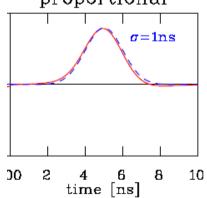
$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1 + i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

- \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length
- > Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C

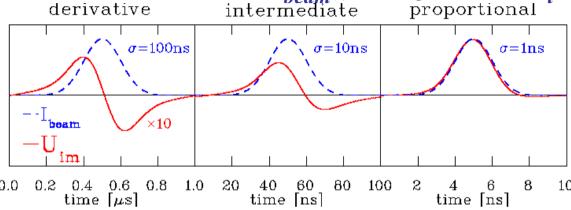
Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >> 1$ ns):



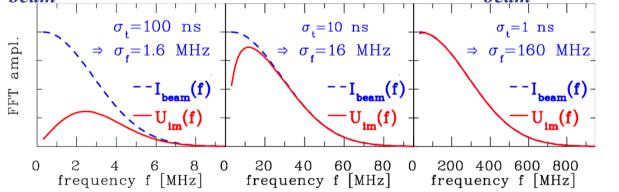
Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{beam}(t)$ having a width of σ_t derivative intermediate proportional



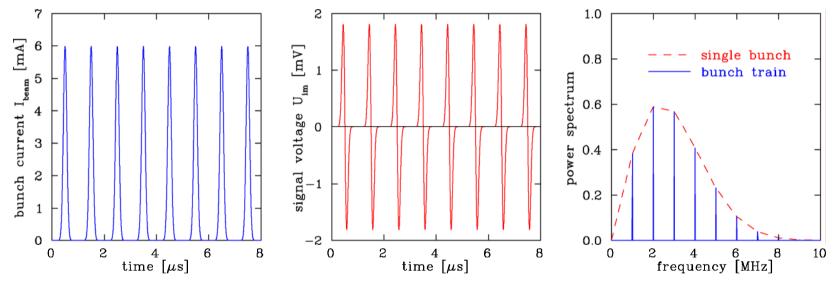
2. FFT of $I_{beam}(t)$ leads to the frequency domain Gaussian $I_{beam}(f)$ with $\sigma_f = (2\pi\sigma_t)^{-1}$



- 3. Multiplication with $Z_t(f)$ with $f_{cut} = 32$ MHz leads to $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- **4. Inverse FFT** leads to $U_{im}(t)$

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:



Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled

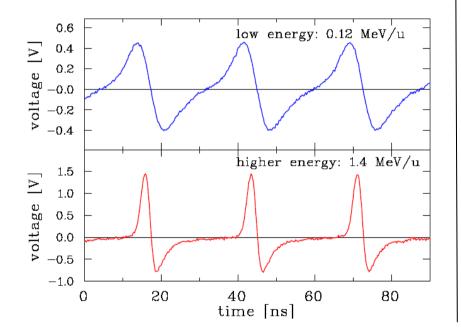
$$C=100$$
pF, $l=10$ cm, $\beta=50\%$, $\sigma_t=100$ ns

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- \triangleright Bandwidth up to typically $10*f_{acc}$

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron:

100 MHz $< f_{rf} <$ 1 GHz typically R=50 Ω processing to reach bandwidth $C \approx 5$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz **Example:** 36 MHz GSI ion LINAC



Proton synchtrotron:

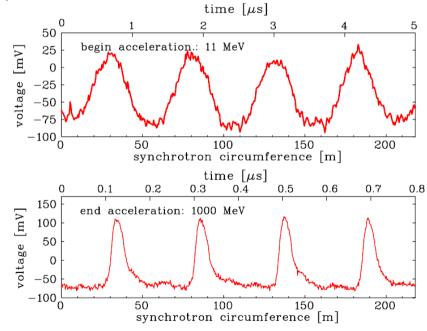
1 MHz $< f_{rf} <$ 30 MHz typically

 $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t

 $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$

Example: non-relativistic GSI synchrotron

 $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$



Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

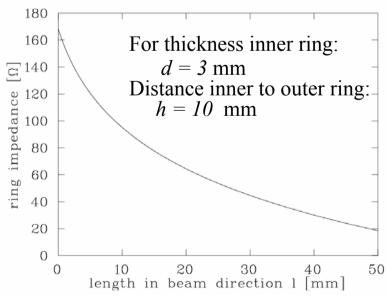
Pick-Ups at a LINAC for longitudinal Observation

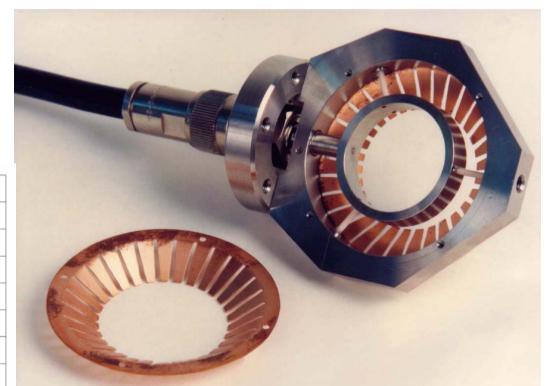
One ring in 50 Ω geometry to reach \approx 1 GHz bandwidth.

The impedance is like a strip-line with 100 Ω due to the two passes of the signal:

$$Z_0(l) = \frac{87 \ [\Omega]}{\sqrt{\varepsilon_r + 1.4}} \ln \left(\frac{5.98h}{0.8 \cdot l + d} \right)$$

⇒ Impedance depends strongly on geometry





The difference voltage between plates gives the beam's center-of-mass →most frequent application

'Proximity' effect leads to different voltages at the plates:

$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$

$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$

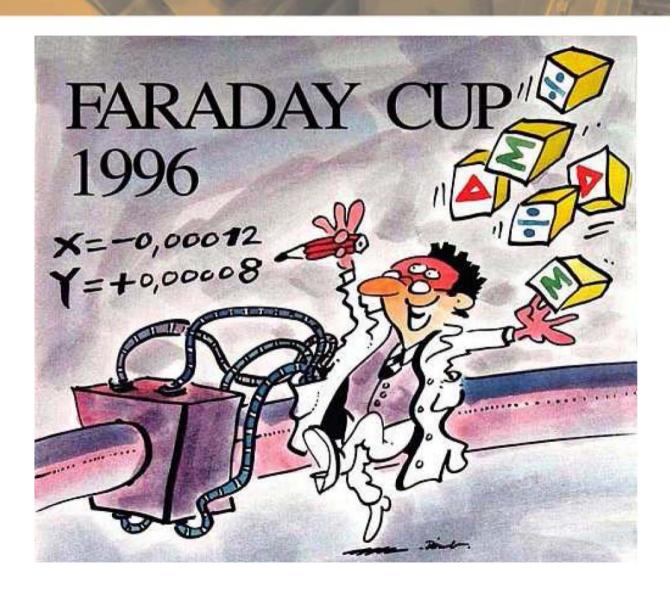
$$I_{beam}$$

$$I_{beam$$

10

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ S is a geometry dependent, non-linear function, which have to be optimized Units: S=[%/mm] and sometimes S=[dB/mm] or k=[mm].

The Artist View of a BPM



2-dim Model for a Button BPM

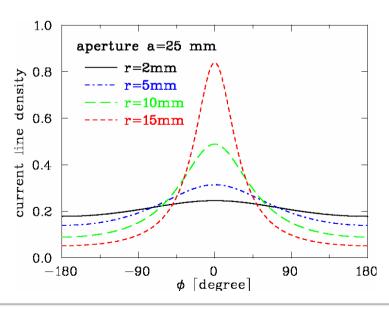
'Proximity effect': larger signal for closer plate

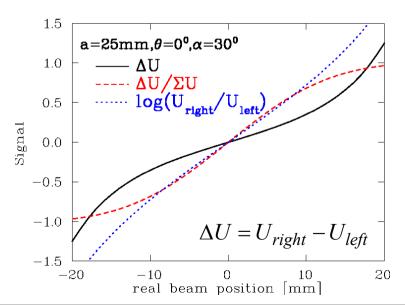
Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

button beam

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$





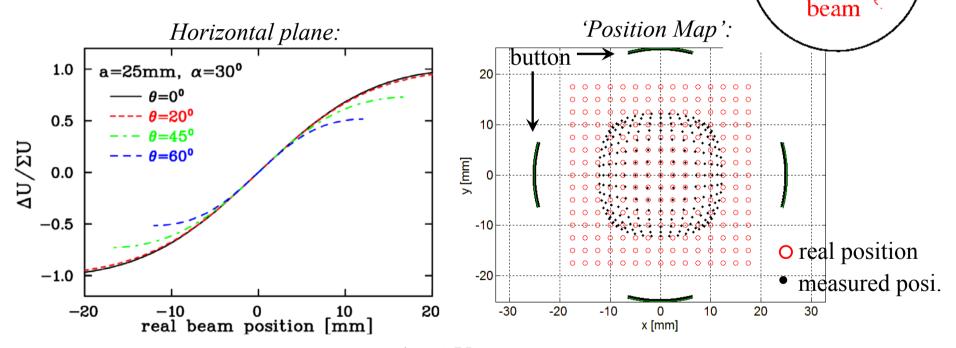
2-dim Model for a Button BPM

button

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

Sensitivity: $x=1/S \cdot \Delta U/\Sigma U$ with S [%/mm] or [dB/mm]

For this example: center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$



The measurement of U delivers: $x = \frac{1}{S_x} \cdot \frac{\Delta U}{\Sigma U} \rightarrow \text{here } S_x = S_x(x, y) \text{ i.e. non-linear.}$

Button BPM Realization

N-CONNECTOR

FLANGE

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

INSULATOR

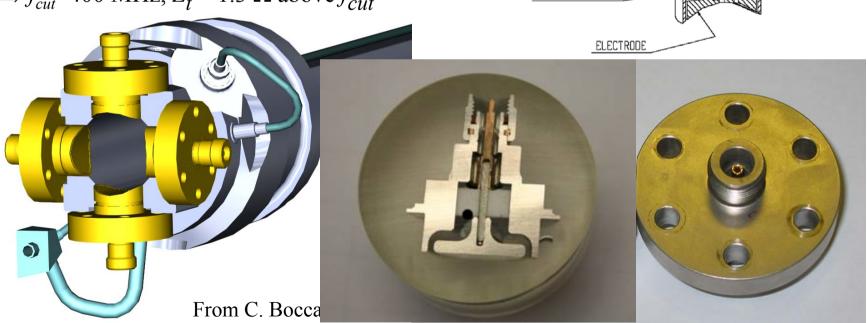
RF RING CONTACT

Button BPM with 50
$$\Omega \Rightarrow U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

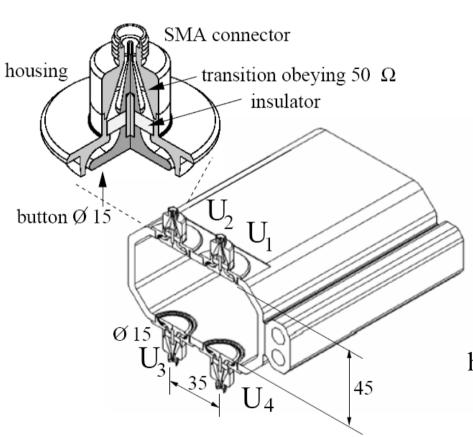
Example: LHC-type inside cryostat:

 \emptyset 24 mm, half aperture a=25 mm, C=8 pF

$$\Rightarrow f_{cut}$$
=400 MHz, Z_t = 1.3 Ω above f_{cut}



Due to synchrotron radiation, the button insulation might be destroyed ⇒buttons only in vertical plane possible ⇒ increased non-linearity



HERA-e realization

horizontal:
$$x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

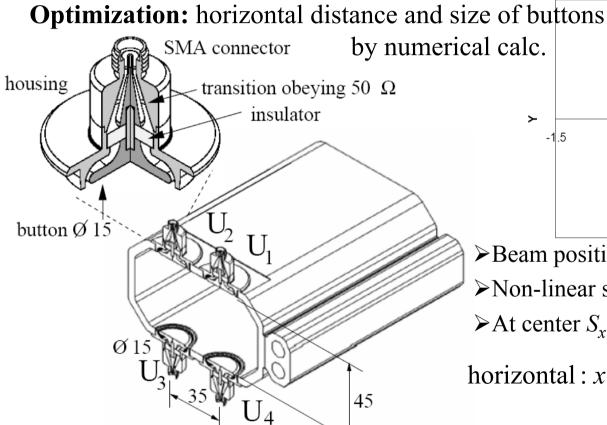
vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

15

PEP-realization

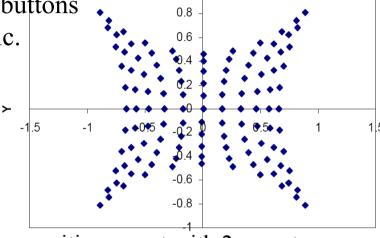
Due to synchrotron radiation, the button insulation might be destroyed

⇒buttons only in vertical plane possible ⇒ increased non-linearity



PEP-realization

From S. Varnasseri, SESAME, DIPAC 2005



- ➤ Beam position swept with 2 mm steps
- ➤ Non-linear sensitivity and hor.-vert. coupling
- \triangleright At center $S_x = 8.5\%$ /mm in this example

horizontal:
$$x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Shoe-box BPM for Proton Synchrotrons

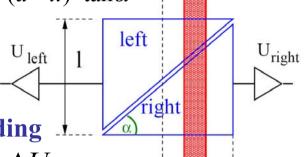
Frequency range: 1 MHz $< f_{rf} <$ 10 MHz \Rightarrow bunch-length >> BPM length.

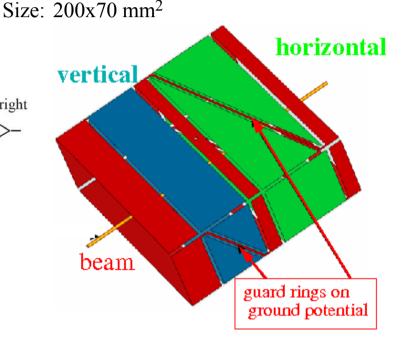
beam

Signal is proportional to actual plate length:

 $l_{\text{right}} = (a+x) \cdot \tan \alpha, \quad l_{\text{left}} = (a-x) \cdot \tan \alpha$

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}}$$
 U_{left}





In ideal case: linear reading

$$x = a \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$$

beam position [mm]

Shoe-box BPM:

Advantage: Very linear, low frequency dependence

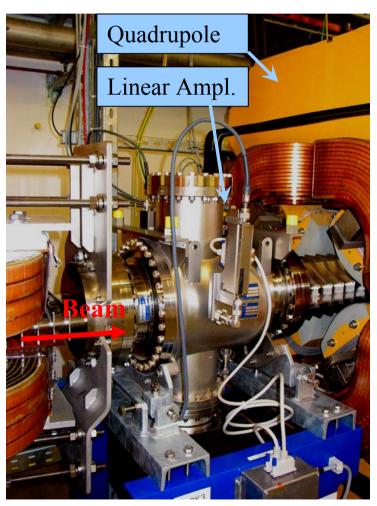
i.e. position sensitivity S is constant

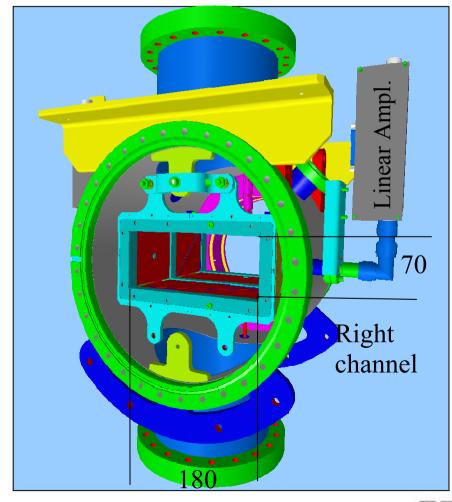
Disadvantage: Large size, complex mechanics

high capacitance

Technical Realization of a Shoe-Box BPM

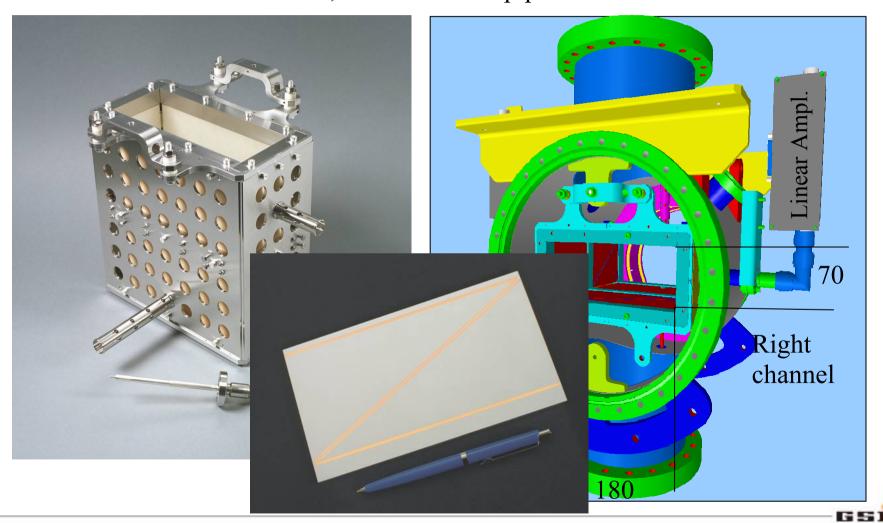
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.





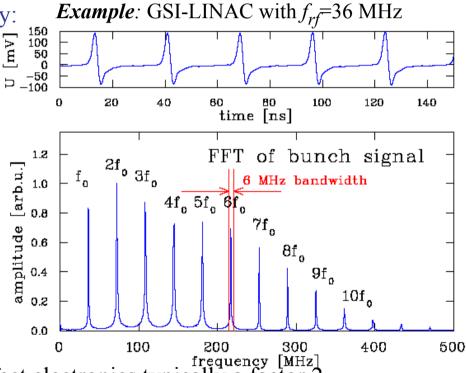
Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



General: Noise Consideration

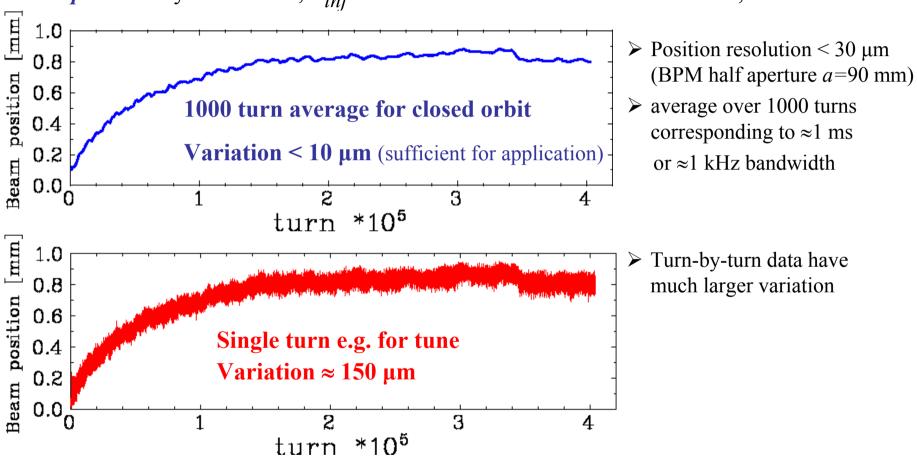
- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U/\Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:
- ➤ Input signal amplitude
 - \rightarrow large or matched Z_t
- Thermal noise at $R=50\Omega$ for T=300K (for shoe box R=1k Ω ...1M Ω)
- ⇒ Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}



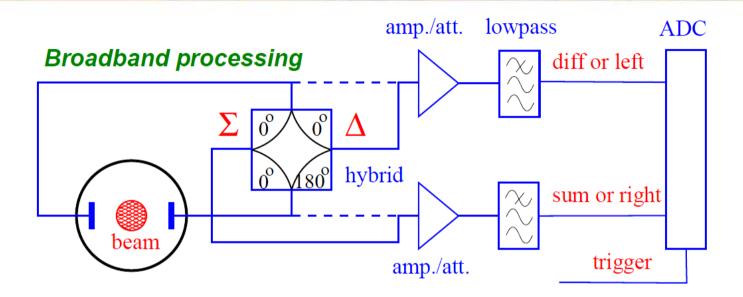
Remark: Additional contribution by non-perfect electronics typically a factor 2

Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Comparison: Filtered Signal ↔ Single Turn



However: not only noise contributes but additionally **beam movement** by betatron oscillation \Rightarrow broadband processing i.e. turn-by-turn readout for tune determination.

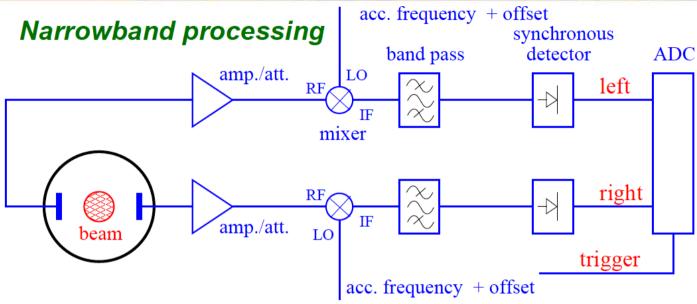


- \succ Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- ➤ Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- \triangleright ADC: digitalization \longrightarrow followed by calculation of of $\Delta U/\Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100~\mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise



Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- ➤ Attenuator/amplifier
- \triangleright Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- > Rectifier: synchronous detector
- \triangleright ADC: digitalization \longrightarrow followed calculation of $\triangle U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

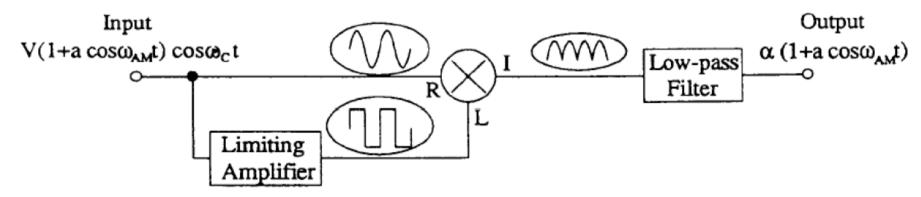
For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Mixer: A passive rf device with

- \triangleright Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$
- \triangleright Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO}\cos\omega_{LO}t$
- Output IF (intermediate frequency) $A_{IF}(t) = A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t$ $= A_{RF} \cdot A_{LO} \left[\cos(\omega_{RF} \omega_{LO})t + \cos(\omega_{RF} + \omega_{LO})t \right]$

⇒ Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier



Close Orbit Measurement with BPMs

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.

Example from GSI-Synchrotron:

Closed orbit:

Beam position averaged over many betatron oscillations.

The tune Q is the number of betatron oscillations per turn.

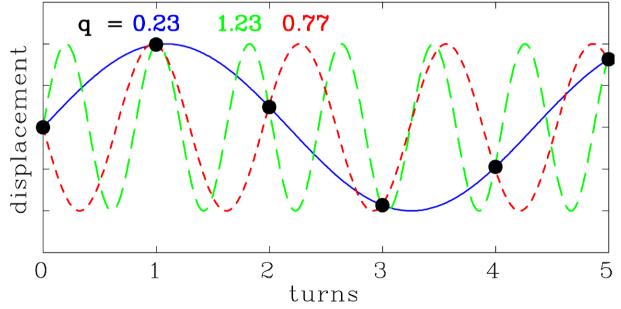
The betatron frequency is $f_{\beta} = Qf_{\theta}$.

Measurement: excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q=n\pm q$.

Moreover, only 0 < q < 0.5 is the unique result.

Example: Tune measurement for six turns with the three lowest frequency fits:



To distinguish

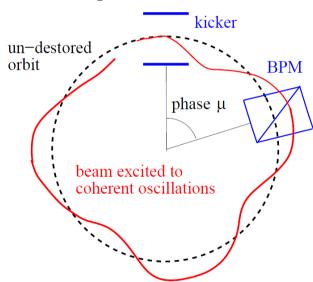
for
$$q < 0.5$$
 or $q > 0.5$:

Changing the tune slightly, the direction of *q* shift differs.

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation

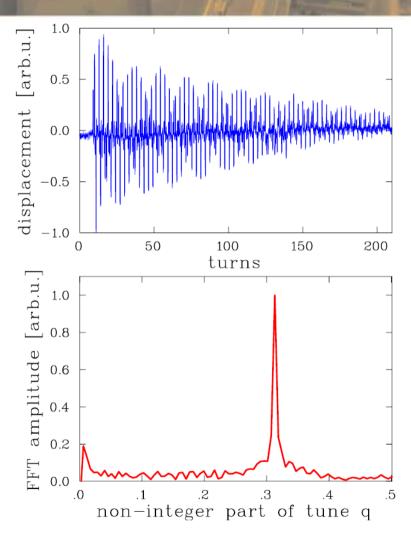
- → the beam position measured each revolution ('turn-by-turn')
- \rightarrow Fourier Trans. give the non-integer tune q. Short kick compared to revolution.



The de-coherence time limits the **resolution**:

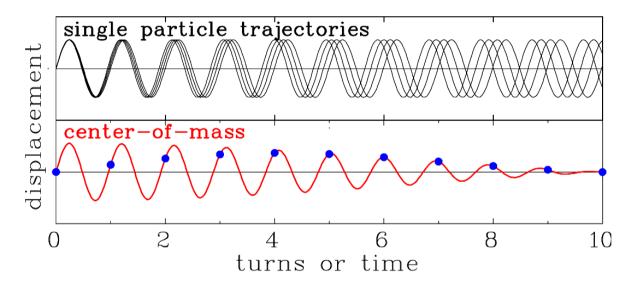
N non-zero samples

 \Rightarrow General limit of discrete FFT: $\Delta q > \frac{1}{2}$



 $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003 \text{ as resolution}$ (tune spreads are typically $\Delta q \approx 0.001!$)

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):



Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom).

⇒ Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

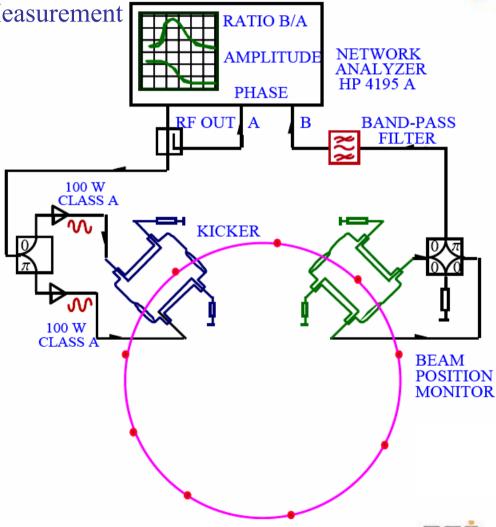
→ Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!

Using a network analyzer:

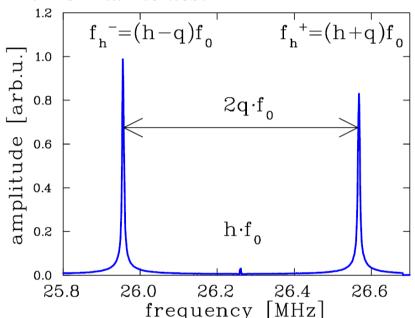
- ➤ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- ➤ The position is measured at one BPM
- ➤ Network analyzer: amplitude and phase of the response
- ➤ Sweep time up to seconds due to de-coherence time per band
- \triangleright resolution in tune: up to 10^{-4}



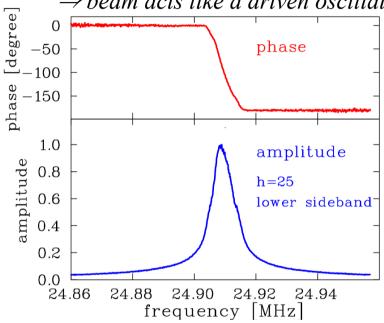
BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at

h=25th-harmonics:



A detailed scan for the **lower** sideband \Rightarrow beam acts like a driven oscillator:



From the position of the sidebands q = 0.306 is determined. From the width

$$\Delta f/f \approx 5.10^{-4}$$
 the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

Advantage: High resolution for tune and tune spread (also for de-bunched beams)

Disadvantage: Long sweep time (up to several seconds).

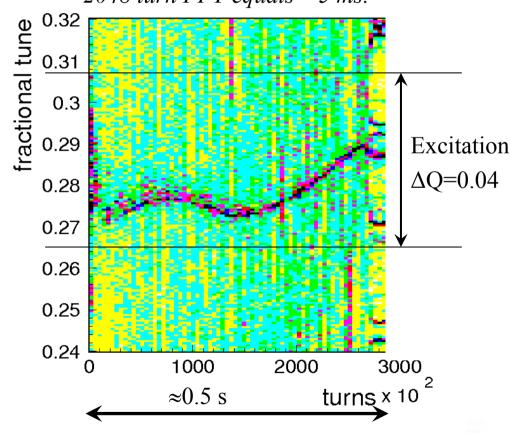
Instead of a sine wave, noise with adequate bandwidth can be applied

- → beam picks out its resonance frequency: *Example:* Vertical tune within 2048 turn
- ► broadband excitation with white noise of $\approx 10 \text{ kHz}$ bandwidth
- ➤ turn-by-turn position measurement by fast ADC
- ➤ Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance

Advantage:

Fast scan with good time resolution **Disadvantage:** Lower precision

Example: Vertical tune within 2048 turn at GSI synchrotron $11 \rightarrow 250 \text{ MeV/u}$ 2048 turn FFT equals $\approx 5 \text{ ms}$.



β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations: From the position deviation x_{ik} at the BPM i and turn k the β -function $\beta(s_i)$ can be evaluated.

The position reading is: $(\hat{x}_i \text{ amplitude}, \mu_i \text{ phase at } i, Q \text{ tune}, s_0 \text{ reference location})$

$$x_{ik} = \hat{x}_i \cdot \cos(2\pi Qk + \mu_i) = \hat{x}_0 \cdot \sqrt{\beta(s_i)/\beta(s_0)} \cdot \cos(2\pi Qk + \mu_i)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required.

The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

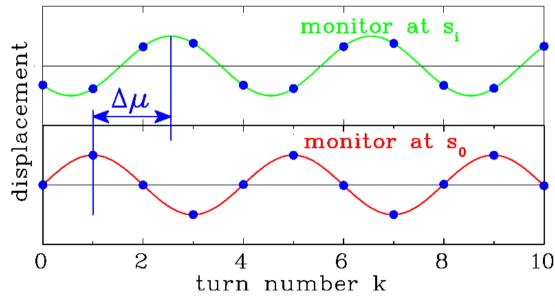
The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

Without absolute calibration,

 β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$



Dispersion and Chromaticity Measurement

Dispersion $D(s_i)$: Excitation of coherent betatron oscillations and change of momentum p by detuned rf-cavity:

- \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{p}$
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

Chromaticity ξ : Excitation of coherent betatron oscillations and momentum shift $\Delta p/p$ [%]

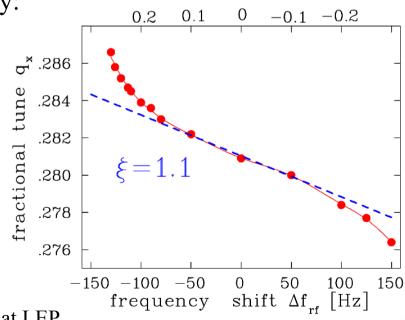
change of momentum p by detuned rf-cavity:

→ Tune measurement(kick-method, BTF, noise excitation):

$$\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$$

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$

 \Rightarrow slope is dispersion ξ .



Measurement at LEP

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth ↔ beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M $\Omega \Rightarrow$ proportional shape

LINAC, e-synchrotron: 0.1 to 3 GHz, 50 $\Omega \Rightarrow$ differentiated shape

Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Shoe-box (p-synch.), button (p-LINAC, e--LINAC and synch.)

Remark: Stripline BPM as traveling wave devices are frequently used

Position reading: difference signal of four pick-up plates (BPM):

- ➤ Non-intercepting reading of center-of-mass → online measurement and control slow reading → closed orbit, fast bunch-by-bunch → trajectory
- Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 - \rightarrow tune q, chromaticity ξ , dispersion D etc.