Q

Measurement of longitudinal Parameters i
BN _a . P ORI Y

The longitudinal dynamics 1s described by the longitudinal emittance as given by:
» Spread of the bunches /
in time, length or rf-phase.
»Momentum spread é = Ap/p,
or energy spread AW/W

1
= g,ong:;jglod5

—4

p—spread

o

(]

or with density function p(,0)
= Siong =— | p(1,8)dI-d5
T

momi. spread 6 lo,]

>

The normalized value is preserved:

norm
€long :,By'glong

distr. P(1)

! | \

Discussed devices: 4 -2 0 [2 | 4
. . bunch lenght 1 |o,
» Pick-ups for bunch length and emittance.

» Other techniques: Special detectors (low E;;, protons), streak cameras (e")

Peter Forck, JUAS Archamps 1 Longitudinal Measurements



The Bunch Position measured by a Pick-Up i
X "W T . oy o oreses=l T
rf voltag
o 0 . . . . Q |
The bunch position is given relative to the accelerating rf. % | bunch |
__ 0 : . . -61 1 Y
C.g Prof 30 %n51de arf caYlty | : / B
must be well aligned for optimal acceleration =
Transverse correspondence: Beam position
oy
Example: Pick-up signal and 36 MHz rf at GSI-LINAC: ;;
. acceleratlng frequency
> 02 F
— /\ /\ /\ part. distribution
GQJD 0.0 8
S w
S -02 \./ \/ \/ \. 5
15 L plck up for 1.4 MeV/u | ©
Z o0 b j\ j\ J\ _ + | pick—up signal
& 05 - 4 5
S o0 £
o |
> 05 -
—-1.0 | \I/, | \./’I | \/II E_'
0 20
time [ns] time or phase

ESN
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Determination of non-relativistic mean Energy using Pick-Ups %‘
X "MW TN . WO 7 RSN TR

The energy delivered by a LINAC is sensitive to the mechanics, rf-phase and amplitude.

For non-relativistic energies PiCk'iP 1 distance L pic-li-up 2
at proton LINACs time-of-flight —I— bunched beam EE—
(TOF) with two pick-ups is used: O O O o o o
ﬂc — L - N*T i
NT + tscope - *|‘- »1 “scope

[+ 171+ rrrrjrrrrrrr 11

— the velocity f is measured. 02 | pick—upl pick—up2 -

Example: Time-of-flight signal from o1 L il

two pick-ups at 1.4 MeV/u:
The reading is ¢ scope 15.82(5)ns with

0.0 prow v W gy
f,p=36.136MHz & T=27.673ns f’"
L =1.629mand N=3 o1 - ]
' ns >W=1.407(3)MeV/u

voltage [V]

= f=0.05497(7) Cocope—10-82
= W=1.407(3) MeV/u 0--*-'--~2'0-~'310---14101---5101...60

The accuracy is typically 0.1 % i.e. comparable to AW/W  time [ns]

IES N
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Precision of TOF Measurement for non-relativistic Energy 9
B\ < NLR TR WY 7 RS T,

The precision of TOF is given by the accuracy in time and distance reading:

) 2
I N
p L NT + tSCOpe

Accuracy of scope reading A¢ =100 ps, uncertainty in distance AL = 1 mm.

Example: GSI-LINAC: L =3.25 m and frf: 36 MHz:

location (GSI-slang) RFQ IH1 [1H2 AL4
energy W [MeV/u] | 0.12 0.75 1.4 114
velocity 3 % 1.6 4.0 55 155
total TOF [ns] 677 271 197 70

bunch spacing Gc/f.;  [cm] 13 33 45 129
Number of bunches N 25 9 7 2

resolution AW/W Vo 0.07 0.10 0.12 0.22

» The accuracy is typically 0.1 % (same order of magnitude as A W/W)
» The length has to be matched to the velocity
» Due to the distance of ~ 3 m, different solutions for the # of bunches NV are possible

— A third pick-up has to be installed closed by, to get an unique solution.
=N
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Cavity Alignment using a TOF Measurement %

X "W T . WY 'essET
The mean energy is important for the matching between LINAC module.

It depends on phase and amplitude of the rf wave inside the cavities.

Example: Energy at GSI LINAC (nominal energy 1.400 MeV/u):
(distance between pick-ups: L =1.97 m = N = 4 bunches)

'_|1°42 R 1.42 L LA N LR BB N LA R R AL L L AN AN LN
2 2 . nominal energy

T 1.40 O

= § 1.40 .
B o
= =

=" 138 = 1.38 7
% %
4y

g 1.36 [ ~-«-- phase ¢=0° 1 £ 136 -
v ! 0 5
: phase ¢=-10" | ©
s f £

g 134 ! 1 8 1.34 .
I Q

4 S S T S S S N S ST SO S SR S T T — FQ PRSI S R S T AT T SO S [ ST ST SN N RN S N TN NN S ST U N

1.0 _ 1. 12 ] 1.3 -20 -10 0 10 20 30
normalized tank amplitude tank phase [degree]

» Proton LINACs: Amplitude and phase should be carefully aligned by precise TOF
» Electron LINACs: Due to relativistic velocity, TOF is not applicable.

"ESN
Peter Forck, JUAS Archamps 5 Longitudinal Measurements



Longitudinal Emittance by linear Transformation using a Buncher ?

X "M T . mow ) 'NeESED
Longitudinal focusing:
Variation of the bunch shape by a rf-buncher voltage Ul
— components 5 and 6 from 6-dim phase-space |~ voltage U2 bunch
Transversal corres.: Quadrupole variation <> 2o DD I e S -

» Transfer matrix of buncher & drift: _ buncher: @ . = 90°  pick-up
R _ 1 0 R _ 1 L/ 4 2 position sO position sl
buncher — 1/ f 1 > Ddrift — 0 1 phase spdce phase spdce
| 27k ¢ =N s D
with focal length: 1/ f = ‘U i NN I O<7

Apv?
» Variation of buncher amplitude U time or phase
= different bunch width at s;:
beam matrix A max—9355(L, )
» System of redundant linear equations for aij(0):

pick—up signal

pick—up voltage

time or phase

oss(1, f1) = R§5(f1) - 055(0) + 2Rs5(f1)Rs6(f1) - 056(0) + Rﬁe(fl) - 0g6(0)  focusing fy

oss(n, fn) = R3(fn) - 055(0) + 2Rss5(fn)Rse(fr) - 056(0) + Rig(fn) - 066(0)  focusing f,,

IES N
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6-dim Phase Space for Accelerators i
X "M TN . e pe PRSI T

St
The particle trajectory is described with the 6-dim vector X = (X, X' > Y, y' , | , o )

For linear beam behavior the 6x6 transport matrix R is used:
The transformation from location s, to s, is:

X(s1) =R-X(sp)

R separates in 3 matrices only if the horizontal, vertical and longitudinal planes do not couple,

e.g. no dispersion D=-R, =0

ESN
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Result of a longitudinal Emittance Measurement i
[P TSN T,

X
Example GSI LINAC:
The voltage at the single gap -resonator is varied for 11.4 MeV/u Ni'*" beam, 31 m drift:

‘ T T T I T T T ‘ T T T |
U,=0.16 MV U,=0,82 MV U,=164 MV ||

distribution
distribution
distribution

A s ML AL
yy" A VLA L I

10-05 00 05 10 ~10-05 00 05 10 ~10-05 00 05 10
ime [ns] lime [ns] time [ns]

\

bunch width o |[ns]
.

00 05 10 15
Buncher peak amplitude U  [MV]
» The structure of short bunches can be determined with special monitor
» This example: The resolution is better than 50 ps or 2° for 108 MHz
» Typical bunch length at proton LINACs: 30 to 200 ps
=5
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Longitudinal Emittance within a Transfer-Line i
X O
As for the ’three grid’ method, the emittance can be determined in a transfer line.
pick—up 1 pick—up 2 pick—up 3

bunch J_ 1 J_

location: s s s s

phase space

S O 04 0

The system of redundant linear equations with the transfer matrix R(i) to location s;:
0'55(1) — Rg5(1) . 0'55(0) + 2R55(1)R5g(1) . 056(0) + Rgs(l) . 066(0) R(l) DS — Sq

os5(n) : Ri.(n) - 055(0) 4+ 2Rss(n)Rsg(n) - 056(0) + Rig(n) - 066(0)  R(n) : so — sn

Assumptions: » Bunches much longer than pick-up or relativistic E -field: E | > E||

» Gaussian distribution without space-charge effects. —1
Peter Forck, JUAS Archamps 9 Longitudinal Measurements




Longitudinal Emittance using tomographic Reconstruction i
N AR TEEETT . ooy S CREEETSE TS

Tomography is medical image method /é{\ /“%f 1% back-
Tomography: original object /5 projection
2-dim reconstruction of L
sufficient 1-dim projections 'T_I _‘
Application at accelerators: : il :
Longitudinal emittance X X )
evolution in synchrotrons. N\ éyg\

Bunch observation:

Each revolution,
the bunch shape changes a bit
due to synchrotron oscillations.

Fulfilled condition: .0, <<f;e- E ' E .
Algebraic back projection: \ \\

[terative process by redistributing Q\Q\

the 2-dim 1image and considering the iw‘*\\ | Pa. [
differences to the previous iteration step.

Iterative projection after sufficient
& back-projection / iterations

GBS
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Results of tomographic Reconstruction at a Synchrotron I

X

Bunches from 500 turns at the CERN PS and the phase space for the first time slice,
measured with a wall current monitor:

File View Option Control

Help

Tomoscope

e

bul 6 16:27:00 2001

© Tinimg 1372

Dzlta Turnz 15

H Traces BJ
Tire Span 2,03 e

0 190 200

H. Seala 1 = | redpt M Sarple= 500 <

300

na

pta'trace

490

el 1020 o

500

Y. Szala 0.6 < | Wdie

Ihnlirl:el I.hl-‘rel F'ﬁ-ﬂzel Il:uugr'ml

Typical bucket filling. Important knowledge for bunch gymnastics’.

44

"MW TN . WO 7 'S T

[a]

LHC, Cl372

Jul 6 16:27:00 Z001

1 S1E1Z

Ireratlons

[a/aval

=

[newv] o

Mtechd Brea = 1.19 &vs
Mom., ESpread = 2.27E-2

RME Emitt. = 0.243 =v=

BF = 0.306
MNe = 1.47E12
f50:1 = 716;608 Hz

IES

1.5RES

[e/av]

Peter Forck, JUAS Archamps

11

Longitudinal Measurements



Results of tomographic Reconstruction at a Synchrotron IT %
X ".Wm T oYy S RS ™
Bunches from 500 turns at the CERN PS and the phase space for the first time slice,

measured with a wall current monitor:
e e e oo ]

File View Option Control Help File  View Sound
Tomoscope EASTC  wul 2 13:01:47 2001 L enere, c353
Jul 2 13:01:47 2001
C Timing 9% af
Delta Turns 15 al
N Traces 37 12l
i af
Time Span 2.71 ms
i B
iy G Io 26 a0 48 o
2 o | T ]  rIteratioms
{ 3. 5IE11
A s0 b
i
A -
3 100 -
&
so b
- '
[mev] or \
o . dl)%_\
160 - \
0 50 100 150 200 250 gicly
ns -100 -50 o 50 wo @@ E % a ]
[nal]
H. Scale 0.25 —II ns/pt N Samples 1000 — | pts/trace Telay 1584 ns Y, Scale 1 _nl Yodiv
RME Emitt. = 2.17 eV= BF = D.04&8 _
Undﬂtel UnFreezel F‘rm‘zel T""W"""l Mtehd Area = 0.561 evs Ne = 3.%4E11 d
Meom. Bpread = 3.36E-3 fs0:1 = 2267236 Hz 2

Mismatched bunch shown oscillations and filamentation due to ‘bunch-rotation’.

GBS
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Resistive Wall Current Monitor i
Broadband observation of bunches can be performed with a resistive Wall Current Monitor
Principle: » Ceramic gap bridged with n =10...100 resistors of R = 10...100 Q
» Measurement of voltage drop for R,,=R/n=1...10 Q
» Ferrite rings with high L — forces low frequency components through resistors
Bandwidth: typically f;,,,=R,, /(2xL) ~ 10 KHz

=)
Jnigh=1/(2nR4,, ) = 1 GHz x Bandwidth
Application: Broadband bunch observation. S
B f fi.
WCM equivalent circuit low high
U : | |
coax cable B0 bl Yo i i iV N
_D_ 0.001 0.1 10 1000 100000
shield signa]l _a— ground R frequency f [MHz]
i -~ L Tl 1
bipe — ferrite 1‘111gsg1_mm d : — + - +i COC
e C T Ewall Zt RtOt ol
@ beam pipe 11

Ibeam Wlthln bandw1dth Zt = Rtot

.
.

||e==i|
Yy Ry

tosignal  to ground

SN
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O

Resistive Wall Current Monitor i
"4 "MW TN . WOy 7 RSN TR
Example: Realization at Fermi-Laboratory

GBS
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Bunch Structure at low £;,: Not possible with Pick-Ups

X
Pick-ups are used for:

» precise for bunch-center relative to rf
» course image of bunch shape

But:
For B < 1 = long. E-field significantly modified:

Il

‘ i

Q
‘¥

Example: Comparison pick-up — particle counter:
Al with 1.4 MeV/u (8 = 5.5%)

_Iiu_p _____ ! p=0.1
i 11I
Rdo l
n - et
— — 'trans. field E (t)
alnpl \ art | bunch shape :
= =5 % /\\
i3 ooy
= R=2 cm /i \.\
© T leo.=¢emfp § \
e~ :K : \
> Fi b
: /i
¥ / i \\
-~ s ! .
- f \“‘——
e U | gy | R e
.0
time [ns]

Peter Forck, JUAS Archamps

AN .
/1\ pick—up
: / \ 1
.'?'.'T'—:I"/'ruuisa PP ENNUPIVE TP S ;j
) ! A ]
2 n$/div \ v 1
100|mV/diy| 7
—~ 400 —
[]
g .
& 300 particle detector 1
9]
5200 FWHM=0.71 ns
o h)
2 100
3
(o]
(9] 0 ..... A " . L L L " . " "
0 5 10 15 20
time relative to rf [ns]
‘ = the pick-up signal is insensitive
m——
to bunch ’fine-structure’
- = M
15 Longitudinal Measurements



Low Velocity Effect: General Consideration i
X "W T . Wmaawy o orRess=l T

Lorentz transformation of single point-like charge:
Lorentz boost and transformation of time:E | (t) =y -E'| (t')and t > t'

Trans. E | lab.-frame of a point charge: Long. E|| lab.-frame of a point charge:
e
E, (1)= pr— R E /() = - e ypct
TTE 2 - 3/2
0 [R +( dre [Rz n (7/,Bct)2]

E ‘ £ \

E 1.4 E

= i - - -

B 1.2 - B =01 = 05 //

— r - ‘ _ r ~

“ g0 o g =03 = - )

v | —— B =09 - :

2 08 | B R -

y i !

g 06 - B tgw

5 7 \ I ___g =

o 04 - S -

E L i ‘\ | Q [ = — B =

5 EA R E 05 F_  p -

w 0.2 ’ kN - v B -

‘T r ’-"”J- --.‘-\"--..____ ‘-us: i

§ 0.0 “:-_—':—:.é.’ . | .‘r‘;'g:‘r-:_:—t-“ '_(‘3 | ‘
-2 -1 0 1 2 s _o _q 0 5

time [ns] time [ns]

ESN
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O

Broadband coaxial Faraday Cups for Bunch Structure i
B\ > . &% WA T N

The bunch structure can be observed with cups, having a bandwidth up to several GHz.

Bandwidth and rise time: BW [GHz] = 0.3/%,.; _[ns]

rise

Impedance of a Z
coaxial transmission line: 2  GOLLECTOR n
% N
ZO — ZC .In router 2 \\\\\ |
2z r-inner BEAM v aESSS
. %
with 7, = |Hots ) esic Wﬁ
EoCr ;
%
= 1mpedance matching to prevent 2 ~N
for reflections ]
Z — ZO 43 mm
Voltage reflection: A/ = 7 47
0 Z 1+
Voltage Standing Wave Ratio: = VSWR =—= Y
Ly 1-py

Z =Z . no reflection. Z =0 = p;,=—1: short circuit. Z= o0 = p;,= 1: open circuit.

LGS
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Realization of a Broadband coaxial Faraday Cup : "g

COAXIAL FARADAY CUP

GSR
Peter Forck, JUAS Archamps 18 Longitudinal Measurements



Time-of -Flight using Particle Detectors %
X

WS 7 N
The time of arrival of the particle 1s determined relative to the accelerating rf:
| disc.
' TDC ¢
cllﬁl:. stop start 1 =
VO L start 2

accelerator rf

/\

amp.

collimator diamond

thin Ta-target sec. e from Al-foil

: ) ' e
N 4\\ beam

Realization at GSI-LINAC: Less than one particle per bunch due to single particle counting:
— Foil (130 nm): attenuation ~1077 by Rutherford scat. =finite solid angle 42, , =2.5 - 1074
— Stop-detectors: Fast detector with 1 ns pulse width (diamond)

— TDC: Time relative to rf, resolution less than 25 ps (corresponding to 0.3° in phase)

— Start-detector: 2" thin Al foil (50 nm) for secondary ¢ acc. toward an MCP +50 Q anode

~ = Result: determination of phase and energy of individual particles.

ESN
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Result of Bunch Structure Determination at low E;, i
X S N T . BT 7 RSl TV

Example: The bunch shape at 120 keV/u from
GSI-LINAC with different currents:

The bunch structure is dependent on I I | |
100  high [ = 5 mA —
the amplitude or phase setting 80 B
— wrong bunching (RFQ), ~ 80 |
w
emittance blow-up, filamentation... = 40 |
: L : ©
— non-Gaussian distributions are possible < 2q —
5200 I
o,
2150 -
o
-
o 100 -
50 —
0 L | | | o

—10 —5 0 o 10
time relative to rf [ns]|

ESN
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Results of longitudinal Emittance Determination at low E;, E
X S N T . BT 7 RSl TV

No ‘standard’ method for longitudinal emittance measurement is available!
Using two detectors in coincidence and a drift space in between,

the phase and the energy of a individual particle can be determined.

— for many particles the longitudinal phase space can be spanned.

Example: GSI-LINAC at 1.4 MeV/u with low and high current Ar beam
The effect of the emittance blow-up due to the large space-charge is seen.

h

R

—

A
\

At=0.42 ns

Diamond
&)
v'l

t

SAW/W=1.7 %

@]
—
(aW)
o
o
9]

t ns|
Diamond [

) w
- - L
05 ! s £
¢ o,
S ! 0‘1' ! f Y
0.0 - T
/
i
E 1
205
E At-0.68 ns A
e I SAW/W=2.8 % |
1 O . | | [ [ J
0 1 2 3 4 5 6
"Diamond (:lb
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Bunch Structure using secondary Electrons for low E,;, Protons %
X ".m T . WO O r'REEE T

Secondary e liberated from a wire carrying the time information.

— Bunch Shape Monitor (BSM) detector: SEM or FC

Working principle: bunch shape
» insertion of a 0.1 mm wire at = 10 kV

» emission of secondary ¢ within less 0.1 ps

- rf—deflector
» secondary e are accelerated (+ phase shifter)
» toward an rf-deflector
» rf-deflector as ’time-to-space’ converter @

» detector with a thin slit
» slow shift of the phase

zb’ill'e on Hl‘{; = wdary electron from wire
» resolution #1° < 10 ps - T, @ -
» Measurements are comparable beam

to that obtained with particle detectors.

aperture: about 1 mm

SEM: secondary electron multiplier
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Realization of Bunch Shape Monitor at CERN LINAC2 %

X "R TN - W7 eSS

rf-deflector

movable
HYV wire

ESN
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Bunch Length Measurement for relativistic e- 9
X ".Am T . WMo 7 RERESE T
Electron bunches are too short (o, < 300 ps) to be covered by the bandwidth of
pick-ups (f< 1 GHz < ¢, ,>300 ps) for structure determination.
— Time resolved observation of synchr. light with a streak camera: Resolution = 1 ps.

] — >
C | |Kystron Y * Y HP7000. UNIX
Y - - T VME. Ethernet
, - 4 2.8ns : IC-40
cavity RF master steps gating video
frequency ] pulse acquis.
352.2MHz %%133’ 2 999 generator al

steps
A A synchr. *
8.3Hz A
photo-cathode 88Mhz } frame-extr.

e
Lo/ |- J 1
.] ———— CCD
f / CCIR
video
fastr ol sl;low al 25Hz
. vertica 10r1Zonta /
pinhole / deflection _ deflection  MCT
IS
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Results of Bunch Length Measurement by a Streak Camera i
R A vaa . W v RS T

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale)

and a slower scan in horizontal direction (24 ps).

Example: Bunch length at the synch. Light source SOLEIL for Urf:2MV
for slow direction 24 ps and scaling for fast scan 360 ps = o, = 35 ps.

0 Slow Scan Time (us) 24

-

bunch length

Fast Scan
Time (ps)

360

IES N
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The Artist View of a Streak Camera 4
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The Importance of Bunch Length by Streak Camera
"M TN . e pe PRSI T

X

44

Short bunches are desired by the synchrotron light users for time resolved spectroscopy.

The bunch focusing 1s changed by the rf-amplitude.

Example: Bunch length o, as a function of stored current

(space-charge de-focusing, impedance broadening) for different rf-amplitudes at SOLEIL:

80 F | I 1 =
a
—_ a
wn a
& Py ¢
= 60 ad a m
é A ad A 'Y oa®
= VY o 8,
5 Sl o ©° % % XK
2 40tk ad 88 °9 'os xxxX% _
c “A .ﬁ% xX
2 & 5. 8 x X ®
J &P o000 x X
c o9 0O x
L~
2 20 A A V=12MV -
o ® V=2MV
x V=28 MV
0].- | I I | —
0 5 10 15 20
I (mA)
=N
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A\

—> below resolution of streak camera

Measurement of Beam Profile

O
A

"M T . mOWTY 7 O r'REEl T
For Free Electron Lasers — bunch length below 1 ps is used

—> short laser pulses with #2410 fs and electro-optical modulator
Electro optical modulator: birefringent, rotation angle depends on external electric field

Relativistic electron bunches: transverse field £, ;,=VE , ., carries the time information

Scanning of delay between bunch and laser — time profile after several pulses

Additionally, single shot modifications successfully tested.

Polarizer

fs laser
(800 - 1100 nm)

scanhing
delays

electronic / mech.

Coulomb field —»

electron bunch

Analyzing

Polarizer

photo detector
(Si, InGaAs)

EO-crystal

Peter Forck, JUAS Archamps

IES N

Longitudinal Measurements



Measurement of Bunch Shape at FEL-Facility <11

normalized EO signal

Example: Bunch length at FEL test facility FLASH

Bunch shape dependence on bunch charge

— 0.7nC

~1ps

T
m— 0 9nC (4

— 0.5nC

1
-0.5 0 05 1 15 2
time in ps

Scanning of the short laser
pulse relative to bunch:

THz pulse laser pulsel

Results at FLASH, Hamburg, see B. Steffen et al., FEL Conf. Stanford, p. 549, 2005.
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Measurement of Energy Spread by magnetic Spectrometer %
X A~ _ U RWERE] T e N

The momentum 6 = Ap/p or energy spread A W/W can be determined

with a magnetic spectrometer:
— Via dispersion, the momentum i1s shifted to a spatial distance.

beam

The right optics has

to be chosen

to separate the transverse and
longitudinal parameters
(transverse point-to-point focusing).

ESN
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Summary of longitudinal Measurements

X "M T . a7 PRERESSE T
Longitudinal <> transverse correspondences:
» position relative to rf <> transverse center-of-mass
» bunch structure in time <> transverse profile in space

» momentum or energy spread <> transverse divergence.
Determination uses:

Broadband pick-ups: > position relative to rf, mean energy
» emittance at transfer lines or synchrotron via tomography
assumption: bunches longer than pick-up.
Particle detectors: ~ » TOF or secondary ¢ from wire
— for non-relativistic proton beams

reason: E-field does not reflect bunch shape.

Streak cameras: » time resolved monitoring of synchrotron radiation
— for relativistic e -beams, ¢, ., < Ins

reason: too short bunches for rf electronics.

Laser scanning: » Electro-optical modulation of short laser pulse
— highest time resolution.

IES N
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