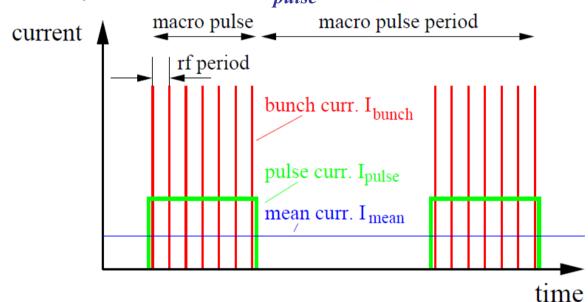
Measurement of Beam Current

The beam current is the basic quantity of the beam.

- ➤ It this the first check of the accelerator functionality
- > It has to be determined in an absolute manner
- ➤ Important for transmission measurement and to prevent for beam losses.

Different devices are used:

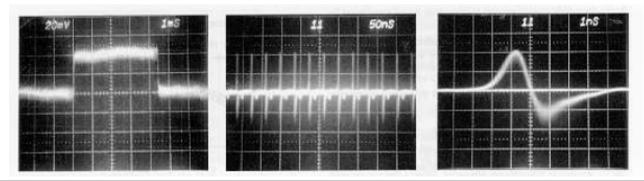
- Transformers: Measurement of the beam's magnetic field
 They are non-destructive. No dependence on beam energy
 They have lower detection threshold.
- Faraday cups: Measurement of the beam's electrical charges
 They are destructive. For low energies only
 Low currents can be determined.
- ➤ Particle detectors: Measurement of the particle's energy loss in matter


 Examples are scintillators, ionization chambers, secondary e− emission monitors

 Used for low currents at high energies e.g. for slow extraction.

Beam Structure of a pulsed LINAC

Pulsed LINACs and cyclotrons used for injection to synchrotrons with $t_{pulse} \approx 100 \, \mu s$:



One distinguish between:

- \triangleright Mean current I_{mean}
- \rightarrow long time average in [A]
- ➤ Pulse current *I*_{pulse}
- \rightarrow during the macro pulse in [A]
- ➤Bunch current *I*_{bunch}
- → during the bunch in [C/bunch] or [particles/bunch]

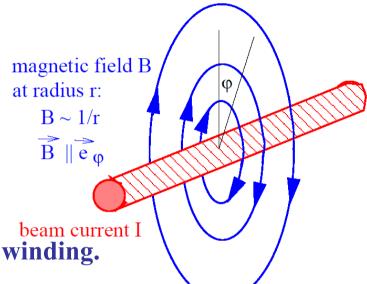
Remark: Van-de-Graaff (ele-static):

→ no bunch structure

Example:

Pulse and bunch structure at GSI LINAC:

Magnetic field of the beam and the ideal Transformer


▶ Beam current of N charges with velocity β

$$I_{beam} = qe \cdot \frac{N}{t} = qe \cdot \beta c \cdot \frac{N}{l}$$

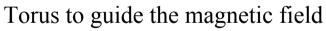
- > cylindrical symmetry
- → only azimuthal component

$$\vec{B} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{e_{\varphi}}$$

Example: 1 μ A, r = 10cm \Rightarrow 2 pT

Idea: Beam as primary winding and sense by sec. winding.

⇒ Loaded current transformer

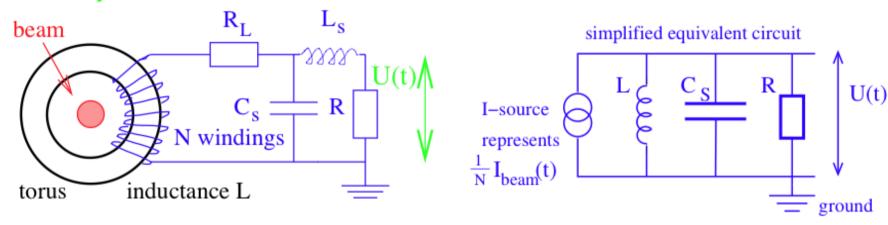

$$I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$$

 \triangleright Inductance of a torus of μ_r

$$L = \frac{\mu_0 \mu_r}{2\pi} \cdot lN^2 \cdot \ln \frac{r_{out}}{r_{in}}$$

Goal of Torus: Large inductance L and guiding of field lines.

Definition: $U = L \cdot dI/dt$

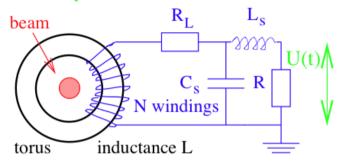


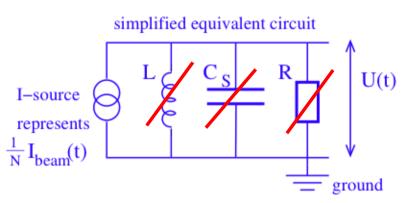
Passive Transformer (or Fast Current Transformer FCT)

Simplified electrical circuit of a passively loaded transformer:

passive transformer

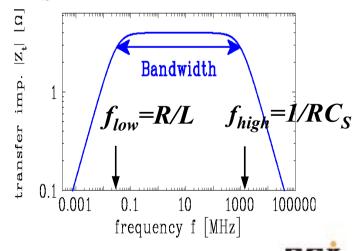
A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A], equivalent to transfer function or transfer impedance Z.


Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)


Bandwidth of a Passive Transformer

Analysis of a simplified electrical circuit of a passively loaded transformer:

passive transformer



For this parallel shunt:

$$\frac{1}{Z} = \frac{1}{i\omega L} + \frac{1}{R} + i\omega C_S \Leftrightarrow Z = \frac{i\omega L}{1 + i\omega L/R + \omega L/R \cdot \omega RC_S}$$

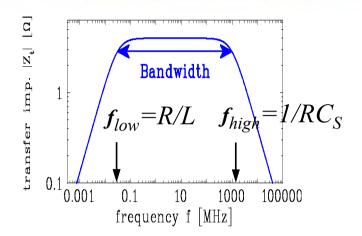
- \triangleright Low frequency $\omega \ll R/L: Z \rightarrow i\omega L$
 - i.e. no dc-transformation
- > High frequency $\omega \gg 1/RC_S$: $Z \rightarrow 1/i\omega C_S$ i.e. current flow through C_S
- \triangleright Working region R/L $\ll \omega \ll 1/RC_S$: $Z \simeq R$
 - i.e. voltage drop at R and sensitivity S=R/N.

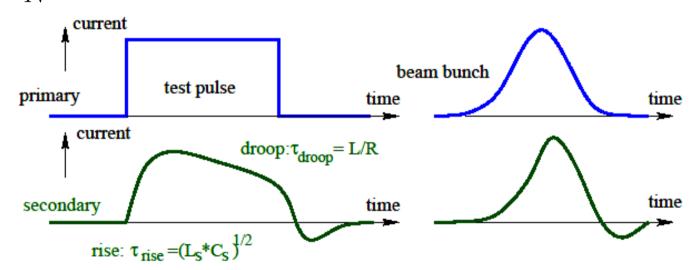
No oscillations due to over-damping by low $R = 50 \Omega$ to ground.

Response of the Passive Transformer: Rise and Droop Time

Time domain description:

Droop time: $t_{droop} = 1/3 f_{low} = L/R$


Rise time: $t_{rise} = 1/3 f_{high} = 1/R C_S$ (ideal without cables)

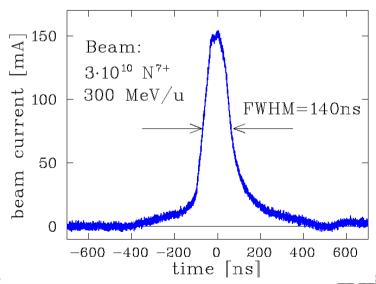

Rise time: $t_{rise} = 1/3 f_{high} = \sqrt{L_S C_s}$ (with cables)

 R_L : loss resistivity, R: for measuring.

For the working region the voltage output is

$$U(t) = \frac{R}{N} \cdot e^{-t/\tau_{droop}} \cdot I_{beam}$$

Example for passive Transformer

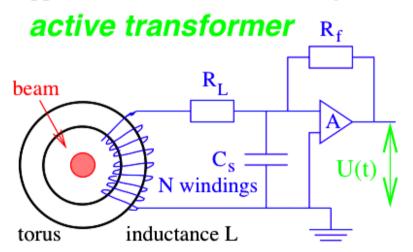

For bunch observation e.g. transfer between synchrotrons a bandwidth of 2 kHz < f < 1 GHz $\Leftrightarrow 1$ ns < t < 200 µs is well suited.

Example GSI type:

Inner radius	$r_i = 70 \text{ mm}$
Outer radius	$r_o = 90 \text{ mm}$
Torus thickness	l = 16 mm
Torus material	Vitrovac 6025:
	$(CoFe)_{70\%}(MoSiB)_{30\%}$
Permeability	$\mu_r \simeq 10^5$
	for $f < 100 \text{ kHz}$,
	$\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A at $R = 50 \Omega$,
	10^4 V/A with ampl.
Resolution	$40 \ \mu A_{rms}$
$\tau_{droop} = L/R$	0.2 ms
$\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz to 300 MHz

Fast extraction from GSI synchrotron:

'Active' Transformer with longer Droop Time



Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to $R \approx 0 \Omega$ load impedance i.e. a current sink

- + compensation feedback
- \Rightarrow longer droop time au_{droop}

Application: measurement of longer $t > 10 \mu s$ e.g. at pulsed LINACs

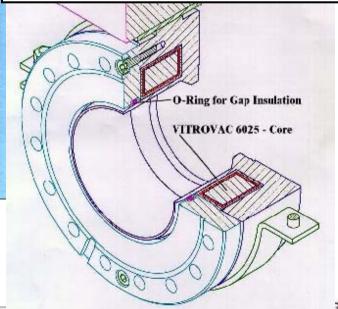
The input resistor is for an op-amp: $R/A \ll R_L$

$$\Rightarrow \tau_{droop} = L/(R_f/A + R_L) \simeq L/R_L$$

Droop time constant can be up to 1 s!

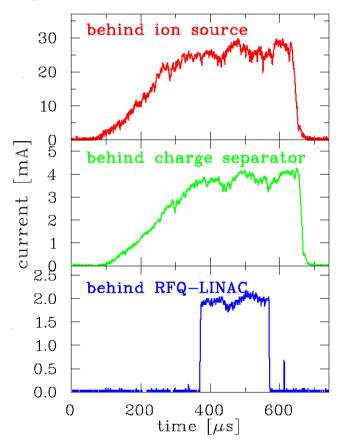
The feedback resistor is also used for range switching.

An additional active feedback loop is used to compensate the droop.

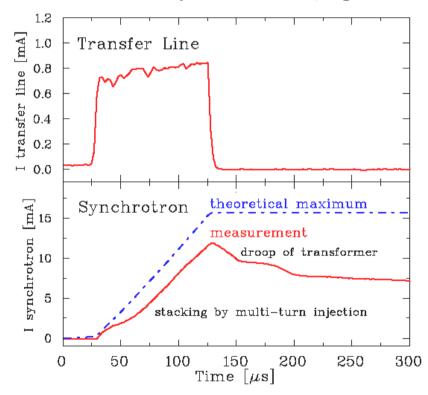

'Active' Transformer Realization

Active transformer for the measurement of long $t > 10 \mu s$ pulses e.g. at pulsed LINACs

Torus inner radius $r_i=30 \text{ mm}$ $r_o = 45 \text{ mm}$ l = 25 mm**Torus outer radius Core thickness** Core material Vitrovac 6025 (CoFe)_{70%} (MoSiB)_{30%} $u_r = 10^5$ Core permeability Number of windings 2x10 crossed 10^6 V/A Max. sensitivity Beam current range 10 μA to 100 mA Bandwidth 1 MHz 0.5 % for 5 ms **Droop** rms resolution 0.2 μA for full bw

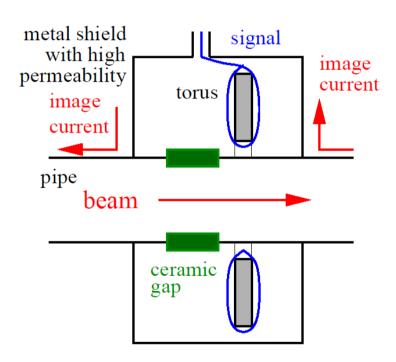


'Active' Transformer Measurement



Active transformer for the measurement of long $t > 10 \mu s$ pulses e.g. at pulsed LINACs

Example: Transmission and macro-pulse shape for Ni²⁺ beam at GSI LINAC


Example: Multi-turn injection of a Ni²⁶⁺ beam into GSI Synchrotron, 5 μs per turn

Shielding of a Transformer

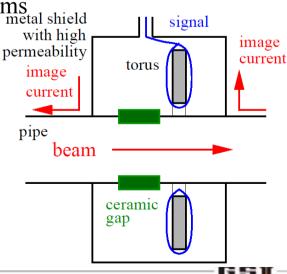
The image current of the walls have to be bypassed by a gap and a metal housing. This housing uses μ -metal and acts as a shield of external B-fields as well.

Design Criteria for a Current Transformer

Criteria:

- 1. The output voltage is $U \propto 1/N \Rightarrow$ low number of windings for large signal.
- 2. For a low droop, a large inductance L is required due to $\tau_{droop} = L/R$: $L \propto N^2$ and $L \propto \mu_r (\mu_r \approx 10^5 \text{ for amorphous alloy}).$
- 3. For a large bandwidth the integrating capacitance C_s should be low $\tau_{rise} = \sqrt{L_s C_s}$.

Depending on applications the behavior is influenced by external elements:

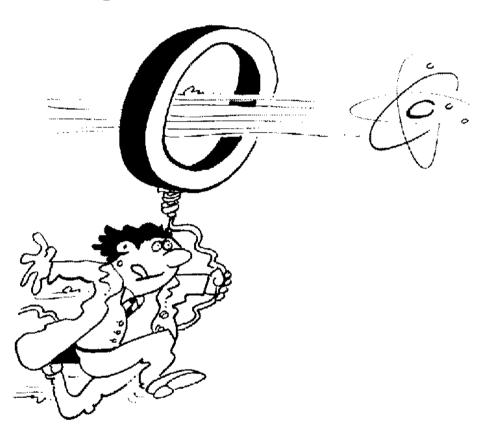

Passive transformer: $R = 50 \Omega$, $\tau_{rise} \approx 1$ ns for short pulses.

Application: Transfer between synchrotrons : 100 ns $< t_{pulse} <$ 10 μ s

Active transformer: Current sink by I/U-converter, $\tau_{droop} \approx 1$ s for long pulses. Application: macro-pulses at LINACs: 100 µs $< t_{pulse} < 10$ ms metal shield

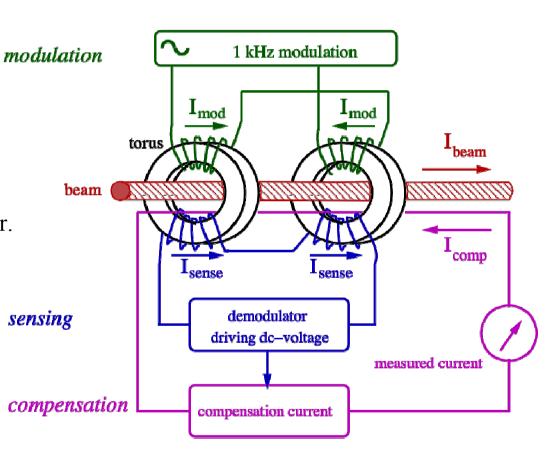
General:

- The beam pipe has to be intersected to prevent the flow of the image current through the torus.
- ➤ The torus is made of 25 μm isolated flat ribbon spiraled to get a torus of ≈15 mm thickness, to have large electrical resistivity.
- Additional winding for calibration with current source.

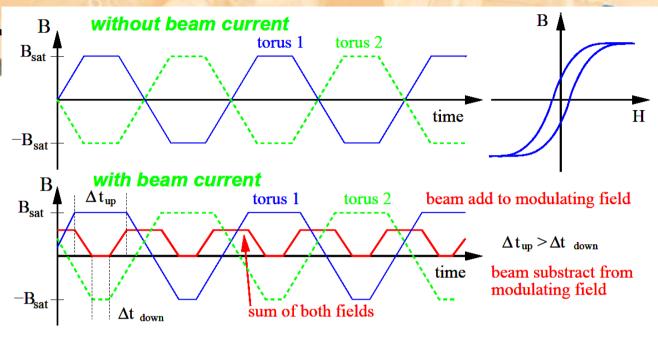

The Artist' View of Transformers

The active transformer ACCT

The passive, fast transformer FCT


Cartoons by Company Bergoz, Saint Genis

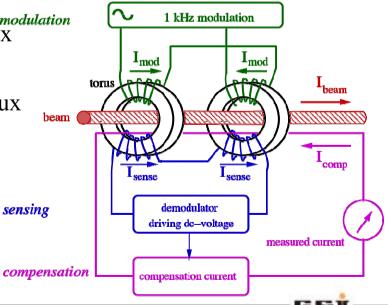
The dc Transformer



How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

- ➤ Modulation of the primary windings forces both torii into saturation twice per cycle.
- Sense windings measure the modulation signal and cancel each other.
- But with the I_{beam} , the saturation is shifted and I_{sense} is not zero
- **Compensation current** adjustable until I_{sense} is zero once again.

The dc Transformer


➤ Modulation without beam:

typically about 1 kHz to saturation \rightarrow **no** net flux

➤ Modulation with beam:

saturation is reached at different times, \rightarrow net flux

- ➤ Net flux: double frequency than modulation,
- ➤ Feedback: Current fed to compensation winding for larger sensitivity
- ➤ Two magnetic cores: Must be very similar.

The dc Transformer Realization

Example: The DCCT at GSI synchrotron (designed 1990 at GSI):

Core radii $r_i = 135 \text{ mm}, r_o = 145 \text{mm}$

Core thickness 10 mm

Core material Vitrovac 6025: (CoFe)_{70%} (MoSiB)_{30%}

Core permeability $\mu_r \simeq 10^5$ Saturation $B_{sat} \simeq 0.6 \text{ T}$ Isolating cap Al_2O_3

Number of windings 16 for modulation and sensing

12 for feedback

Ranges for beam current $300 \mu A$ to 1 A

Resolution $2 \mu A$

Bandwidth dc to 20 kHz

rise time $20 \ \mu s$

Offset compensation $\pm 2.5 \,\mu\text{A}$ in auto mode

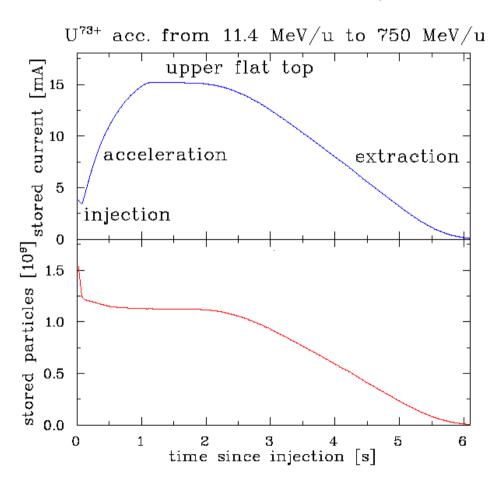
 $< 15 \mu A/day$ in free run

temperature coeff. $1.5 \,\mu\text{A}/^{\circ}\text{C}$

Recent commercial product specification (Bergoz NPCT):

Most parameters comparable the GSI-model

Temperature coeff. $0.5 \,\mu\text{A/°C}$


Resolution several µA (i.e. not optimized)

Measurement with a dc Transformer

Example: The DCCT at GSI synchrotron:

 \Rightarrow Observation of beam behavior with 20 µs time resolution \rightarrow important operation tool.

Important parameter:

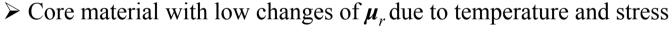
Detection threshold: 1 μA

(= resolution)

Bandwidth: dc to 20 kHz

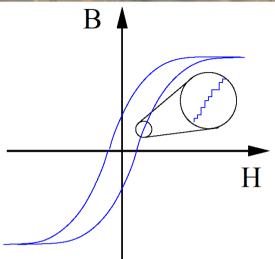
Rise-time: 20 µs

Temperature drift: $1.5 \,\mu\text{A}/^{0}\text{C}$


 \Rightarrow compensation required.

Design Criteria and Limitations for a dc Transformer

Careful shielding against external fields with μ -metal.

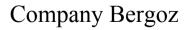

- ➤ High resistivity of the core material to prevent for eddy current
 - \Rightarrow thin, insulated strips of alloy.
- ➤ Barkhausen noise due to changes of Weiss domains
 - \Rightarrow unavoidable limit for **DCCT**.

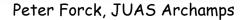
- \Rightarrow low micro-phonic pick-up.
- ightharpoonup Thermal noise voltage $U_{eff} = (4kBT \cdot R \cdot f)^{1/2}$
 - \Rightarrow only required bandwidth $\Im f$, low input resistor R.
- > Preventing for flow of secondary electrons through the core
 - \Rightarrow need for well controlled beam centering close to the transformer.

- $\sim 30 \mu A$ for FCT with 500 MHz bandwidth
- $\sim 0.3~\mu A$ for ACT with 1 MHz bandwidth.

The Artist' View of Transformers

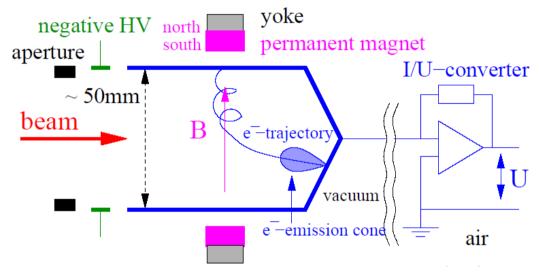
The active transformer ACCT




The passive, fast transformer FCT

The dc transformer DCCT

100.001



Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup

 \Rightarrow The beam's charge are recorded as a function of time.

Currents down to 10 pA with bandwidth of 100 Hz!

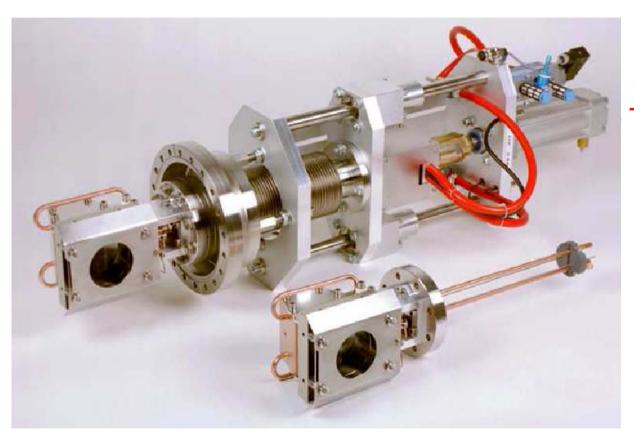
Magnetic field:

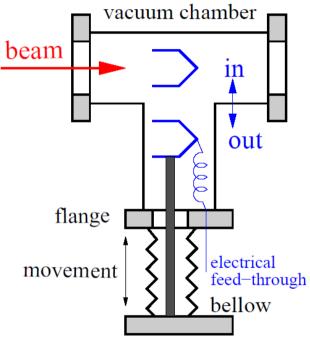
To prevent for secondary electrons leaving the cup

And/or

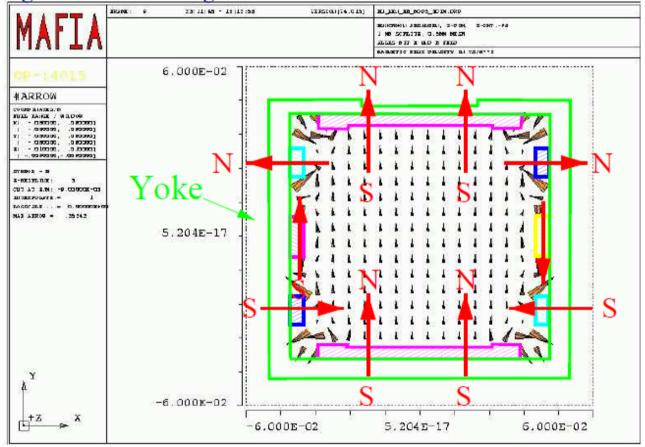
Electric field:

Potential barrier at the cup entrance.


The cup is moved in the beam pass → destructive device



The Cup is moved into the beam pass.



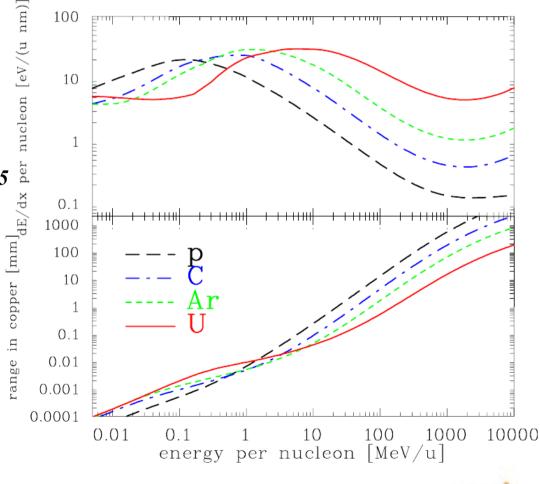
Arrangement of Co-Sm permanent magnets within the yoke and the calculated magnetic field lines.

The homogeneous field strength is B ~ 0.1 T.

Energy Loss of Ions in Copper

Bethe Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right)$$

Range:
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

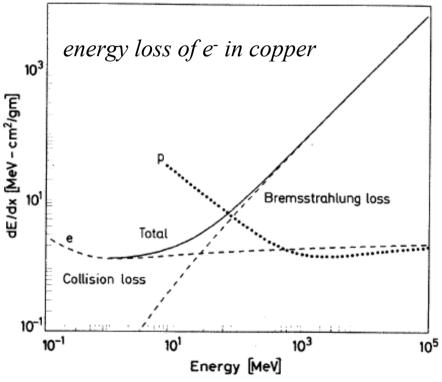

with approx. scaling $R \propto E_{max}^{1.75}$

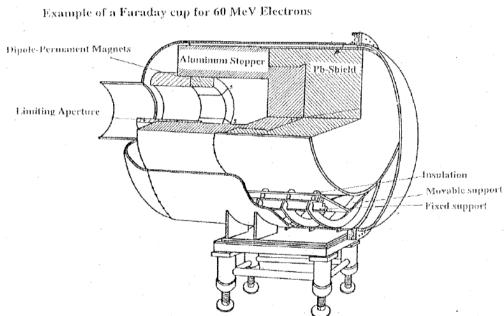
Numerical calculation with semi-empirical model e.g. SRIM

Main modification $Z_p o Z^{eff}_{p}(E_{kin})$

 \Rightarrow Cups only for

 E_{kin} < 100 MeV/u due to R < 10 mm





Bethe Bloch formula is valid for all charged particles.

However, Bremsstrahlung dominates for energies above 10 MeV.

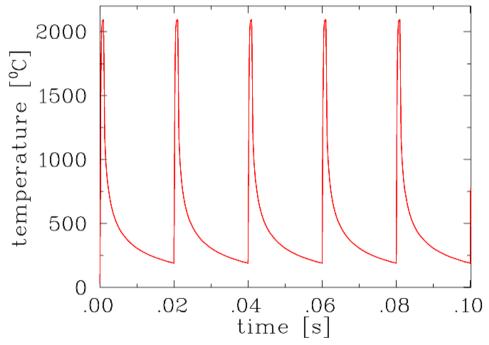
e- shows much larger longitudinal and transverse straggling

Al stopper: Stopping of e⁻ gently in low-Z material Pb-shield: Absorption of Bremstrahlungs-γ

 \Rightarrow Used as beam dump

The heating of material has to be considered, given by the energy loss. The cooling is done by radiation due to Stefan-Boltzmann: $P_r = \varepsilon \sigma T^4$

Example: Beam current: 11.4 MeV/u Ar¹⁰⁺ with 10 mA and 1 ms


Beam size: 5 mm FWHM \rightarrow 40 kW/mm², 1 MW to al power

Foil: 1 μ m Tantalum, emissivity $\varepsilon = 0.49$

Temperature increase:

T > 2000 °C during beam delivery

Even for low average power, the material should survive the peak power!

Numerical calculation of temperature dist. T(x,t) using spec. heat c and conduct. λ :

$$\frac{\partial T(\vec{x},t)}{\partial t} = \frac{\lambda}{\rho c} \cdot \Delta T + \frac{1}{\rho c} \eta(\vec{x},t)$$


With spec. heat c and heat conduct. λ ρ density and η heat source by beam

Example: Beam current:

1.4 MeV/u U⁴⁺ with 15 mA and 0.1 ms with water cooling at side

Heat conductivity is slow

⇒only the average heating is cold and **not** the power during short pulses.

High Power Faraday Cups

Connecting

Cups designed for 1 MW, 1 ms pulse power → cone of Tungsten-coated Copper

Bismuth for high melting temperature and copper for large head conductivity.

Flange with Feed Throughs Cover Dipole Magnet System Stopping Electrodes Cooling \emptyset 60mm \emptyset 60mm System with beam Cooling Channels Tungsten Surface HV (1mm) Suppressor Copper Block

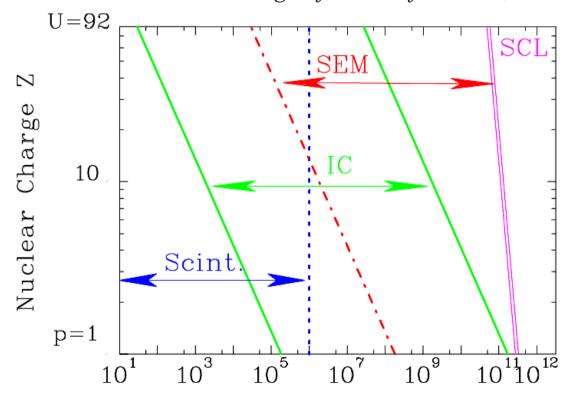
Slow extraction from synchrotron: lower current compared to LINAC, but higher energies and larger range $R \gg 1$ cm.

Particle detector technologies for ions of 1 GeV/u, $A = 1 \text{ cm}^2$:

Particle counting:

max:
$$r \approx 10^6 \text{ 1/s}$$

> Energy loss in gas (IC):


min:
$$I_{sec} \approx 1 \text{ pA}$$

max: $I_{sec} \approx 1 \text{ µA}$

> Sec. e- emission:

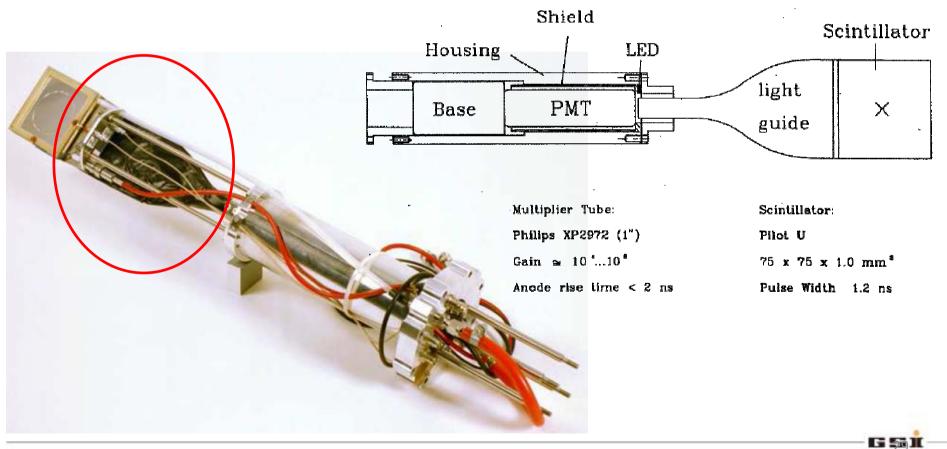
min:
$$I_{sec} \approx 1 \text{ pA}$$

➤ Max. synch. filling:

Space Charge Limit (SCL).

28

Example of Scintillator Counter

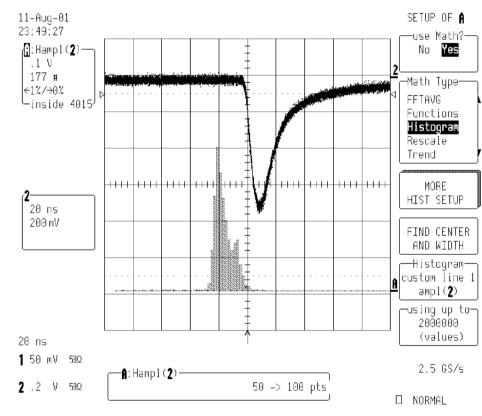


Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Advantage: any mechanical from, cheap, blue wave length, fast decay time

Disadvantage: not radiation hard

Particle counting: PMT \rightarrow discriminator \rightarrow scalar \rightarrow computer

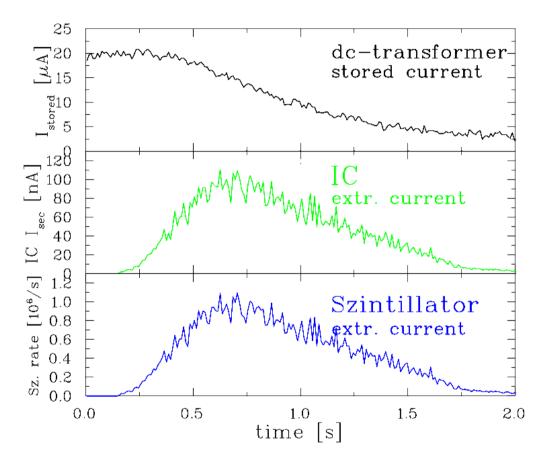

Properties of a good Scintillator

Properties of a good scintillator:

- ➤ Light output linear to energy loss
- \triangleright Fast decay time \rightarrow high rate
- ➤ no self-absorption
- wave length of fluorescence $350 \text{ nm} < \lambda < 500 \text{ nm}$
- index of refractivity $n \approx 1.5$
 - → light-guide
- radiation hardness
 e.g. Ce-activated inorganic
 are much more radiation hard.

Analog pulses from a plastic sc. with a low current 300 MeV/u Kr beam

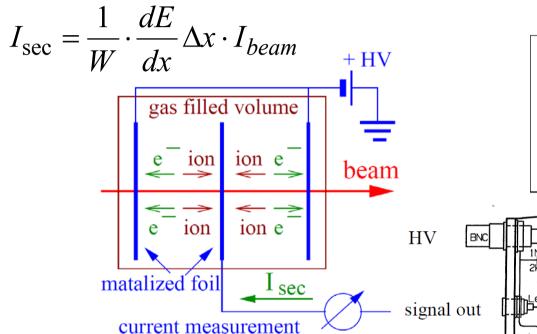
The scaling is 20 ns/div and 100 mV/div.



Slow extraction from a synchrotron delivers countable currents

Example: Comparison for

different detector types:



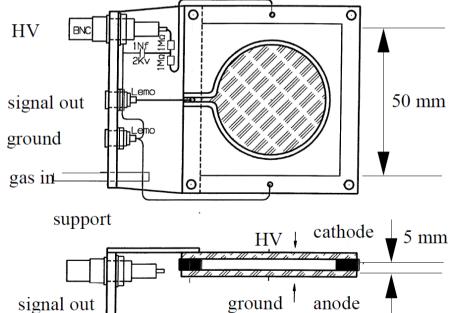
Parameters: dc-transformer inside the synch., ionization chamber and scintillator for a 250 MeV/u Pb^{67+} beam with a total amount of 10^6 particles.

Ionization Chamber (IC): Electron Ion Pairs

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow low current meas.

active surface $64 \times 64 \text{ mm}^2$ active length $\Delta x = 5 \text{ mm}$ electrode material $1.5 \mu \text{m Mylar}$ coating $100 \mu \text{g/cm}^2 \text{ silver}$

 $80 \% \text{ Ar} + 20 \% \text{CO}_2$


gas (flowing) 80 % pressure 1 bar

Example: GSI type

voltage 500 ... 2000 V

W is average energy for one e⁻-ion pair:

Gas	ioni. pot. [eV]	W-value [eV]
He	24.5	42.7
O_2	12.5	32.2
Ar	15.7	26.3
CH_4	14.5	29.1
CO_2	13.7	33.0

Secondary Electron Monitor (SEM): Electrons from Surface

For higher intensities SEMs are used.

Due to the energy loss, secondary e⁻ are emitted from a metal surface.

The amount of secondary e⁻ is proportional to the energy loss

$$I_{\text{sec}} = Y \cdot \frac{dE}{dx} \cdot I_{\text{beam}}$$

$$+ \text{HV} = \frac{e}{e}$$
beam
$$\text{metal plates}$$

$$\text{current measurement}$$

It is a *surface* effect:

- → Sensitive to cleaning procedure
- → Possible surface modification by radiation

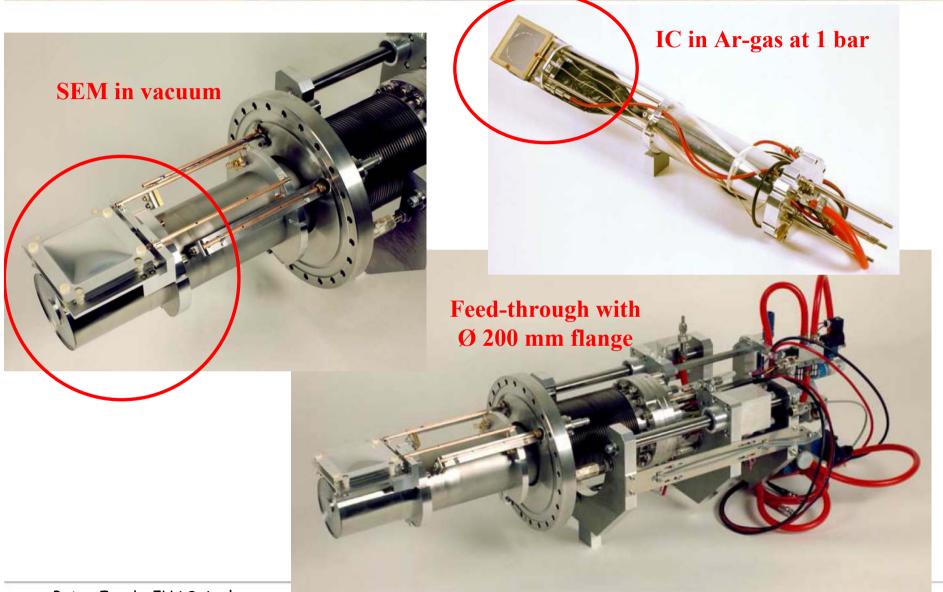
Example: GSI SEM type

material	pure Al (≃99.5%)
# of electrodes	3
active surface	$80 \times 80 \text{ mm}^2$
distance	5 mm
voltage	100 V

Advantage for Al: good mechanical properties.

Disadvantage: Surface effect!

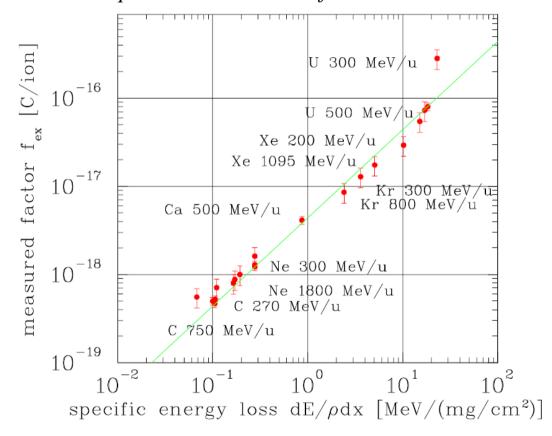
e.g. decrease of yield Y due to radiation


 \Rightarrow For a permanent insertion Ti.

Sometimes they are installed permanently in front of an experiment.

33

Example: GSI Installation for SEM and iC



SEM must be calibrated to achieve 10 % accuracy → comparison to an IC

Example: GSI installation for various ion beams

Result: Secondary electron yield: $Y=e^{-1}(\rho \cdot dE/dx)=27e^{-1}(MeV/mg/cm^2)$.

Current is the basic quantity for accelerators!

Transformer: → measurement of the beam's magnetic field

- \triangleright magnetic field is guided by a high μ toroid
- > types: passive (large bandwidth), active (low droop) and dc (two toroids + modulation)
- \triangleright lower threshold by magnetic noise: about $I_{beam} > 1 \,\mu\text{A}$
- > non-destructive, used for all beams

Faraday cup: \rightarrow measurement of beam's charge

- \triangleright low threshold by I/U-converter: $I_{beam} > 10 \text{ pA}$
- > totally destructive, used for low energy beams

Scintillator, \rightarrow measurement of the particle's energy loss

- *IC*, *SEM*: ➤ particle counting (Scintillator)
 - ➤ secondary current: IC→gas or SEM→surface
 - > no lower threshold due to single particle counting
 - > partly destructive, used for high energy beams