O

Measurement of Beam Current i
X NS T g RS Yy

The beam current 1s the basic quantity of the beam.

> It this the first check of the accelerator functionality

> It has to be determined in an absolute manner

» Important for transmission measurement and to prevent for beam losses.

Different devices are used:
» Transformers: Measurement of the beam’s magnetic field
They are non-destructive. No dependence on beam energy

They have lower detection threshold.

»Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only
Low currents can be determined.

» Particle detectors: Measurement of the particle’s energy loss in matter
Examples are scintillators, ionization chambers, secondary e— emission monitors
Used for low currents at high energies e.g. for slow extraction.
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Beam Structure of a pulsed LINAC %
X NAER T oy g IFREE T

Pulsed LINACs and cyclotrons used for injection One distinguish between:

to synchrotrons with Loulse =100 ps:
| | . d »Mean current /,, , .
current A macro pulisc - macro pulse perio - 1 . - A
: ong time average n
rf period > ons & [A]
— - -

ulse
— during the macro pulse in [A]

> Pulse current / ;

bu}}&h curr. I o

: > Bunch current /7 bunch

pulse curr. Lyyise

— during the bunch in [C/bunch]
| || mean curr. Iean

/!

or [particles/bunch]

Remark: Van-de-Graaff (ele-static):

time

— no bunch structure

Example:

Pulse and bunch
structure at

GSI LINAC:

‘GBS
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Magnetic field of the beam and the ideal Transformer T
X O "M TN . oWy 'S T
»Beam current of N charges with velocity f
N N e
Lpoum =q€-—=qe- fc-— magnetic field B
o { [ at radrus r:
» cylindrical symmetry B - s
— only azimuthal component IS
n / beam Blleo
B = Ho . e¢

7
Example: 1 pA, r=10cm = 2 pT beam current 1
Idea: Beam as primary winding and sense by sec. winding.
—> Loaded current transformer

II/[2= Nﬂvl = Isec =1I/N - Ibeam

> Inductance of a torus of u, Torus to guide the magnetic field
L =508 N2 i T
27 i
»Goal of Torus: Large inductance L~ peam Mvout
and guiding of field lines. —>— >

Definition: U =L - dl/dt

GSN
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Passive Transformer (or Fast Current Transformer FCT) o
X NS T BT 7 RS T

Simplified electrical circuit of a passively loaded transformer:

L
beam RL 5 simplified equivalent circuit
Ay 2‘“31’“‘] A
L C R
S Ut
R I-source - ®
I’-E'a]jl’ﬂ‘&ﬁ‘['ll.‘s
0) v
. N Tbean
torus inductance L — e S —
— ground
A voltages is measured: U=R-I1, =R/N-I,,, =S-1,,.,

with § sensitivity [V/A], equivalent to transfer function or transfer impedance Z.

Equivalent circuit for analysis of sensitivity and bandwidth

(disregarding the loss resistivity R, )

GSN
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Bandwidth of a Passive Transformer i
X "R T O W7/ 'eeseTED
Analysis of a simplified electrical circuit of a passively loaded transformer:
beam R, L, simplified equivalent circuit
] FAAY ™ . c . A
— Ci——R I:J I[-source @ 75é u(t)
S > N windings repre sents
torus inductance L = N hmm(t} v
. ___ E - d
For this parallel shunt: groun
1 1 | B il
—=—+—+ioCg S 2 =
Z iol R }ﬁrza)L/R+a)L/R‘*a)RCS

» Low frequency o < R/L : Z —ioL

1.e. no dc-transformation
» High frequency o > I/RCg: Z — 1/iowCy

1.e. current flow through Cg

» Working region R/L < w < 1I/RCs: Z =R
i.e. voltage drop at R and sensitivity S=R/MV.

Bandwidth
flow=R/L fhig I/RCS

o , 0.000 01 10 1000 100000
No oscillations due to over-damping by low R =50 Q to ground. frequency 1 [MHz]

transfer imp. |Z,| Q]
—

GSN
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Response of the Passive Transformer: Rise and Droop Time i
X LR T . Wy S O REESSE TSN
Time domain description:
Droop time: ¢,,,, = 1/3f,,,= L/R
Rise time: ¢, = 1/3f,., = I/RCg (ideal without cables)
Rise time: ¢, =1/3f,,, = VL(C, (with cables)

R, : loss resistivity, R: for measuring.

Bandwidth
Fio=RIL Srigh=1/RC

0.1

transfer imp. |Z,| [2]
—

For the working region the voltage output is 0001 01 10 1000 100000
R /e frequency [ [MHz]
— . droop
U(t ) - N € 1 beam
T|:'l.11'n::1:|t
il beam bunch
primary test pulse time time
r ol

M-
current
T dmop:'l:dmnp= L/R
secondary /\ time time
(-

_ n "
rise: T ise =(Ls*Cs )

GSN
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Example for passive Transformer

For bunch observation
e.g. transfer between synchrotrons

a bandwidth of 2 kHz < f< 1 GHz
<> 1 ns <t <200 ps is well suited.

Example GSI type:
Inner radius r; = 70 mm
Outer radius r, = 90 mm

Torus thickness [ = 16 mm
Torus material  Vitrovac 6025:

(CoFe)7g9 (MoSiB)309 Fast extraction from GSI synchrotron:
Permeability . ~ 10° | | | ‘ | |

for f < 100 kHz, 2180 §

i, o< 1/ f above £ 41010 N7

Windings 10 = 100 L 300 MeV/u |

Sensitivity 4 V/A at R =50 (), v FWHM=140ns
10* V/A with ampl. é

Resolution 40 pA s 50

Taroop = L/ R 0.2 ms %

Trise = VLsCs 1 ns Sl

Bandwidth 2 kHz to 300 MHz | ' ' | | ' '

—800 —400 —200 O 200 400 600
time [ns]|

N |
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'‘Active’ Transformer with longer Droop Time i
X O

Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to R &0 Q load impedance 1.e. a current sink
+ compensation feedback
= longer droop time 7,

Application: measurement of longer t > 10 ps e.g. at pulsed LINACs
active transformer g;

The input resistor is for an op-amp: R/4 < R;
beam = Tyroop = LAR/ATR;) ~L/R,

Droop time constant can be up to 1 s!

The feedback resistor is also used for range
switching.

N windings

=

torus inductance L

An additional active feedback loop is used to compensate the droop.

GSN
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‘Active’ Transformer Realization . '”g
MmN 7 WA T Dmamawy W oIrNEEESE TE

Active transformer for the measurement of long Torus inner radius  r~=30 mm
t> 10 us pulses e.g. at pulsed LINACs Torus outer radius  r,=45 mm
Core thickness /=25 mm
Core material Vitrovac 6025
(CoFe),y, (MoSiB),,.,
Core permeability =103

& ---_'f-;_* Number of windings 2x10 crossed

| Max. sensitivity 10 V/A
Beam current range 10 pA to 100 mA
Bandwidth 1 MHz
Droop 0.5 % for 5 ms
rms resolution 0.2 pnA for full bw

E2T O-Ring for Gap Insulation

YITROYAC 6025 - Core

: ESN
Peter Forck, JUAS Archamps 9 Beam Current Measurement
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Example: Transmission and macro-pulse
shape for Ni** beam at GSI LINAC

30

<0

10

current [mA]
W e OO

2.0
1.2
1.0
0.5
0.0

'‘Active’ Transformer Measurement i
LW T oy S RS ™
Active transformer for the measurement of long # > 10 us pulses e.g. at pulsed LINACs

' I ' I ' I
behind ion source

| : | : |
' ! ' ! ' !
| behind charge separator
R R R I
| behind RFQ-LINA |
| L) | |
200 400 600

Example: Multi-turn injection of a Ni26*
beam into GSI Synchrotron, 5 us per turn

1.2 —_— —
‘é: 1.0 - Transfer Line .
oz 0.8 -
=
= 0.8 -
I
o 0.4 -
G
< 0.2 _
)
— 00 | . | . | . | . |
1 ' 1 ' 1 ' 1 ' 1
glﬁ | Synchrotron |theerstical maximum _
:' . measurement
E 10 - droop of transformer
D
-9}
=
g5
% stacking by multi—turn injection
0 ! l . l . l . l . l . ]
0 50 100 1580 200 AT 300

Time [us]

Peter Forck, JUAS Archamps
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Shielding of a Transformer i 1’1%

The image current of the walls have to be bypassed by a gap and a metal housing.
This housing uses p-metal and acts as a shield of external B-fields as well.

metal shield | | | signal
with high ~— image
permeability ¢ current
image OTus
current \ ‘
_ (|
pipe
beam -
. ] -l
ceramic
gap

GSN
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Design Criteria for a Current Transformer iT
B\ - "MW TN . ey S PRERSSE T
Criteria:
1. The output voltage is U o I/N = low number of windings for large signal.
2. For a low droop, a large inductance L is required due to 7,,,,, = L/R:
Lo NandL o< M. (u, ~10° for amorphous alloy).

3. For a large bandwidth the integrating capacitance C_ should be low 7., = \/LSC o

Depending on applications the behavior is influenced by external elements:
»Passive transformer: R =50 Q, 7.~ 1 ns for short pulses.

> “rise

Application: Transfer between synchrotrons : 100 ns < toulse < 10 pus

» Active transformer: Current sink by I/U-converter, 7, op ~1 s for long pulses.

Application: macro-pulses at LINACs : 100 ps < Loulse < 10ms . . || siens!

. ith high -
General: permeability | cursent
» The beam pipe has to be intersected to prevent the image torus L

) current
flow of the image current through the torus. w:ﬂ —
» The torus is made of 25 um isolated flat ribbon P beam -
spiraled to get a torus of =15 mm thickness, —
to have large electrical resistivity. aap

gap

» Additional winding for calibration with current source.

IES N
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The Artist’ View of Transformers Cﬁ

\ A\ & s o RS T TS T

The active transformer ACCT The passive, fast transformer FCT

Cartoons by Company Bergoz, Saint Genis

G
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The dc Transformer

X "MW T . oy S O PRERETSE T
How to measure the DC current? The current transformer discussed sees only B-flux changes.
The DC Current Transformer (DCCT) — look at the magnetic saturation of two torii.

modulation [’\J 1 kHz modulation ]
»Modulation of the primary windings | I
forces both torii into saturation —md i
twice per cycle. torus Leam
—-
»Sense windings measure the beam @R B RN TS
modulation signal and cancel each other.
I
»But with the /, . the saturation is T - comp
sense sense
shifted and 7, , 1S not zero ,
) sensing demodulator
» Compensation current adjustable | driving de—voltage | /
until 7 is zero once again. ' l measured current
compens ation compensation current

Peter Forck, JUAS Archamps 14
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B without beam current

The dc Transformer Lo

torus 1

torus 2

. sat + —m8™ L ----- . o/ mmee- N
' . S .
) * ’ *
7 A3 F *
L * ) *
L] “ ’ “
’ - -

torus 1

torus 2 beam add to modulating field

At down

> Modulation without beam:

modulation

typically about 1 kHz to saturation — no net flux

> Modulation with beam:

saturation 1s reached at different times, — net flux

» Net flux: double frequency than modulation,
» Feedback: Current fed to compensation winding
for larger sensitivity

» Two magnetic cores: Must be very similar.

Peter Forck, JUAS Archamps 15

sensing

compensation

" /-— Atup >At down
c

beam substract from

% / L ‘ i hJ
N 7 . ; .
R . . ", timy
A 1o .
B, R N N, modulating field
at —1 ih - -—-- --

sum of both fields

[’\I 1 kHz modulation ]

demodulator
driving de—voltage | /

measured current

Comper sation current

ESN
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The dc Transformer Realization - ‘rﬂ

X @
Example: The DCCT at GSI synchrotron (designed 1990 at GSI):
Core radii r; = 135 mm, r, = 145mm
Core thickness 10 mm
Core material Vitrovac 6025: (CoFe)7o, (MoSiB)sgy
Core permeability [ty =~ 10°
Saturation B, ~06T
[solating cap Al;Oq
Number of windings 16 for modulation and sensing

12 for feedback
Ranges for beam current 300 pA to 1 A

Resolution 2 A

Bandwidth de to 20 kHz

rise time 20 ps

Offset compensation +2.5 pA in auto mode
< 15 pA/day in free run

temperature coeff. 1.5 pA/°C

Recent commercial product specification (Bergoz NPCT):

Most parameters comparable the GSI-model
Temperature coeff. 0.5 pA/eC
Resolution several pA (i.e. not optimized)

G
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Measurement with a dc Transformer i

X AW TN L e IPNERSTSIE T
Example: The DCCT at GSI synchrotron:
—> Observation of beam behavior with 20 ps time resolution — important operation tool.

U™ ace. from 11.4 MeV/u to 750 MeV/

= ﬁppér flat tolp
£15 = =
5
£ 10 - _ ] Important parameter:
5 | /acceleration extraction |
U .
o 5 L i Detection threshold: 1 uA
¥
L W . |
3 tnjectlon (= resolution)
— - 1 ' 1 ' T ' 1 ' 1 ' 3
=15 - Bandwidth: dc to 20 kHz
_%3 Lo L | Rise-time: 20 us
1
3, Temperature drift: 1.5 nA/°C
g 05 | -
- —> compensation required.
% g0 N R N B
o 1 2 3 4 5} g

time since injection [s]

EEEN
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Design Criteria and Limitations for a dc Transformer i’
B\ "4 "MW TN L e TP T
Careful shielding against external B A

fields with u-metal.
» High resistivity of the core material

to prevent for eddy current

= thin, insulated strips of alloy. H
» Barkhausen noise due to changes of Weiss domains
= unavoidable limit for DCCT.

» Core material with low changes of #_due to temperature and stress

= low micro-phonic pick-up.
» Thermal noise voltage U, = (4kBT - R - )"
= only required bandwidth <f, low input resistor R.
» Preventing for flow of secondary electrons through the core

= need for well controlled beam centering close to the transformer.

= The current limits are: ~ 1 pA for DCCT
~ 30 pA for FCT with 500 MHz bandwidth
~ 0.3 pA for ACT with 1 MHz bandwidth.
=S
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The Artist’ View of Transformers T
\ A & Y o o S T = T
The active transformer ACCT The passive, fast transformer FCT

Company Bergoz

=N
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Faraday Cups for Beam Charge Measurement 0}

The beam particles are collected inside a metal cup

— The beam’s charge are recorded as a function of time. The cup is moved in

the beam pass —

- ke
negative HV north yo d . i
= i . | estructive device
aperture J_ south permanent magnet
. 1 I/U—converter
~ 50mm \
bei-. i B e —trajectory (<

| : ¢ U

- ' vacuuil

|
T i
2 —eI111SS1011 CcOon T .

Currents down to 10 pA with bandwidth of 100 Hz!

Magnetic field:
To prevent for secondary electrons leaving the cup

And/or

Electric field:
Potential barrier at the cup entrance.

GSN
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Realization of a Faraday Cup at GSI LINAC : ﬁ

The Cup is moved into the beam pass.

— vacuum chamber —

»}1&1

[ v L

out

flange TN T ]

electrical
movement feed—through

bellow

GSR
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Magnetic Field formed by permanent Magnets g

n [ N

Arrangement of Co-Sm permanent magnets within the yoke
and the calculated magnetic field lines.

The homogeneous field strength1s B ~ 0.1 T.

_____ VIFSDOL |0 18] | E_M._ER_pODS_30IN.OCRD

MAFIA R S

BARXTIC FIUX ONLISCIW Qi TD/HTTI

6., J00E-02 _I'_"—"T-I—--—-N--___
#ARTOW ! | I
e e 1] e T v |
L ; RO U Y B 5
e = N-Hjlhilllltlll N
Fmmar: 3 7 1~ 5 O R P O T U S S S (O é
TUT AT BM: - mooor-m t ! H
mmmmm - L vlc'l‘xe. Jlt$l11¢¢r§lllx-‘ i
e mRE | I ' w kA EAE T B0 ¥ 4w
5. o01p-17 | SO T S T A S S S R O |
[ S T O A A A A A I |
; P T O T T T S SR B T IO
v y 1 g lN R
: B b 2 LANM L L AN
M 1 AR S S O 1| g
“S SR T O A S
Y B b ey
=l |
¥ I
—f.O00E-02 ________5__5_____I
+7 E | T T T T T T T
—L.0d0E-Q2 S.204E-17 S.0005-02

GSH
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Energy Loss of Ions in Copper i
BN N T . mow S -y
7 2 2.2 2
Bethe Bloch formula: - ak = 47N jrmc* - Zi p,—L—|1In 2mecy B _ B’
dx A, i 1
Emax | |
Range: R = j dE dE 10
dx

with approx. scaling Rec E,, 173 .

dE/dx per nucleon [eV/(u nm)]

Numerical calculation = 1?22
with semi-empirical model e.g. SRIM % o f
o 1 |
Main modification Z — 79 (E ind .
= Cups only for . ool
E,, <100 MeV/udueto R <10 mm £ 0001 : -
0.0001 b= Tl L iwl i i 0 .

0.01 0.1 1 10 100 1000 10000
energy per nucleon [MeV/u]

SN
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Energy Loss of Electrons in Copper & Faraday Cups of e- %
X W TERESE T

Bethe Bloch formula 1s valid for all charged particles.

However, Bremsstrahlung dominates for energies above 10 MeV.
e” shows much larger longitudinal and transverse straggling

Example of o l'_ill‘:ld.:l_‘r’ cup for 60 MeV Electrons
energy loss of e in copper | e e TN
vipele-Pernmiment Magnets ; R L L T A S o
to? " . ’”“~--[ i g /\?‘?{‘* AN
o ‘\ N\
- Linsiting Aperture ] . . %‘&“
E | el
I e =]
%
g.l Ansolation
b3 “:II = [ Movalic support
E - e ixed support
W
© e
Collision loss .
107! o oy .- R : X
107! 10! 103 5 : ) . .
0 0" Al stopper: Stopping of e~ gently in low-Z material

Energy [MeV]

Pb-shield: Absorption of Bremstrahlungs-y
= Used as beam dump

(0 o
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Faraday Cups for high Intensity Ion Beam — Surface Heating ﬂ
BN "M T . WO o PRSI T
The heating of material has to be considered, given by the energy loss.
The cooling is done by radiation due to Stefan-Boltzmann: P, = goT*
Example: Beam current: 11.4 MeV/u Ar'%" with 10 mA and 1 ms

Beam size: 5 mm FWHM — 40 kW/mm?, 1 MW toal power
Foil: 1 pum Tantalum, emissivity &= 0.49

Temperature increase:
T > 2000 °C during beam delivery

Even for low average power,
the material should

survive the peak power!

2000

Oc]

S

1500

[EN
]
o
-]

W
O
-

temperature

.00 .02 .04 .06 .08 .10
time [s]

Peter Forck, JUAS Archamps
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Temperature Distribution in Material with Cooling )

X O NS TN . e PSS T

Numerical calculation of temperature dist. T(x,#) using spec. heat ¢ and conduct. A:

oT' (x,t A | R
(1) _ AT +—n(X,1)
ot Jols Jols
; o [C], time = 200 s
With spec. heat ¢ and heat conduct. A Temperature [C} [c]
i 1600 - -] 1600
p density and 7 heat source by beam | e """"'___:,‘;‘;;;;; e 1400
Example: Beam current: ool  Pulse rengm 20005 1200
I B 1 1000
1.4 MeV/u U* with 15 mA and 0.1 ms 1000 L~ ANANEIN | Reperton e .
with water cooling at side 800y U S— 600
Co 600 | g I o o 400
Heat conductivity is slow
400 g~ 200
—only the average heating 1s cold 200 "
and not the power during short pulses. e
Axigy frﬂlm} L5 > 0
(o
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High Power Faraday Cups Ty
X NS TN . O L PRSI T
Cups designed for | MW, 1 ms pulse power — cone of Tungsten-coated Copper
Bismuth for high melting temperature and copper for large head conductivity. El‘;rr‘];eec\f\';‘tﬁ
Feed
Throughs
Cover
Dipole
Magnet
System
Stopping
[ Electrodes
Cooling
System with @60mm
Cooling beam
Channels
Tungsten
Surface HV
(1mm) Suppressor

Copper Block

SN
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Low Current Measurement for slow Extraction : ?.
X O NAR T . Wmaaw 7 IFRlES T

Slow extraction from synchrotron: lower current compared to LINAC,
but higher energies and larger range R > 1 cm.

Particle detector technologies for ions of 1 GeV/u, A = 1 cm?:
U=92

» Particle counting:
max: r = 10% 1/s

> Energy loss in gas (IC):
min: I,.~ 1 pA
max: I,.~ 1 pA

» Sec. e— emission:

|—L
-

min: I,.~ 1 pA
» Max. synch. filling:
Space Charge Limit (SCL).

Nuclear Charge 7

ge.
I
'—L

L |
10'10"

E5SN
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Example of Scintillator Counter - ?.
Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Advantage: any mechanical from, cheap, blue wave length, fast decay time
Disadvantage: not radiation hard

Particle counting: PMT — discriminator — scalar — computer

_ Shield o
Scintillator
Housing ~ / 1LED |
| |
i a0 =7 E
: a— light .
Base PMT | , X
L . : ) ; guide
= ‘ i
-‘%- ‘Muitiplier Tube: Scintillator:
o R Philips XP2972 (1") Pitot U
| Gain = 10°.10°" 75 x 75 x 1.0 mm’®
’
Anode rise lime < 2 ns Fulse Width 1.2 ns

=S
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Properties of a good Scintillator i
LAY "4 LR T maYyY 7RSS T
Analog pulses from a plastic sc. with a low
. o current 300 MeV/u Kr beam.
PI'OpCI'thS of a gOOd scintillator: 11-Aug-B1 SETLP OF f
- ) 23:49:27 —use Math?—
» Light output linear to energy loss Hanpl ] o IS
» Fast decay time — high rate RN 1 o[l Ty
. inside 4015 I r FFTHUG L
» no self-absorption :
1 Rescale
»wave length of fluorescence \ Trend |
350nm<}’<500nm . SRR R R AT NNN N A RRNAR R RE ARRRRIN Ny HORE
. . . 208 ns v M
»index of refractivity n = 1.5 200 [Ep——
. . AND WIDTH
— light-guide | sy
» radiation hardness B o
. . . —using up to—
e.g. Ce-activated inorganic Z00E050
20 ns Walues
are much more radiation hard. T, R
2.2V F B 50 -5 100 ple
) O NORMAL

Peter Forck, JUAS Archamps

The scaling 1s 20 ns/div and 100 mV/div.
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Monitoring of Slow Extraction i
BN
Slow extraction from a synchrotron delivers countable currents
Example: Comparison for -
I ' ' ' |

different detector types: <20 dc—transformer-
; stored current _

| {
| T

IC -

extr. current —

718
D Szintillator 7
xtr. current g

0.0 0.5 1.0 1.5 .0
time [s]

Parameters: dc-transformer inside the synch., ionization chamber and scintillator
for a 250 MeV/u Pb®”* beam with a total amount of 10° particles.

SN
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Ionization Chamber (IC): Electron Ion Pairs

QO
4y

N TN . moWw 7 eSS T

Energy loss of charged particles in gases — electron-ion pairs — low current meas.

[ AN ’
1 dE
]sec - AX'Ibeam
W dx THV
1
gas filled volume |
e ion] ion e beam
o=
e ion| ione
s
matalized fOll I sec

~—(
current measurement

W is average energy for one e -ion pair:

Gas
He
O
Ar

CH4

COq

ioni. pot. [eV]
24.5
12.5
15.7
14.5
13.7

W-value [eV]
42.7
32.2
26.3
29.1
33.0

Peter Forck, JUAS Archamps

Example: GSI type

active surface
active length Ax
electrode material

64 x 64 mm?
5 mm
1.5 pm Mylar

coating 100 pg/cm? silver
gas (flowing) 80 % Ar + 20 %CO,
pressure 1 bar
voltage 500 ... 2000 V
0! 6]
HV el | N
ank:
cKv ‘y:
signal out = 50 mm
gound  [R° | |
gas in I Of o o v
support
bp HV | cathode +5 mm
— gi T
1] [ e
signal out ground f anode +

32
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Secondary Electron Monitor (SEM): Electrons from Surface %
X N TR O WY 'REE T
For higher intensities SEMs are used.

Due to the energy loss, secondary e~ are emitted from a metal surface.
The amount of secondary e~ is proportional to the energy loss

dE

] =Y —-1 beam Example: GSI SEM type

II material pure Al (~99.5%)

+HV = # of electrodes 3
_ - active surface 80 x 80 mm?
ﬁ,é_ beam
= distance 5 mim

voltage 100 V

metal plates

I SE€C
-

Advantage for Al: good mechanical properties.
current measurement

. . |
Itis a surface effect: Disadvantage: Surface effect!

— Sensitive to cleaning procedure
— Possible surface modification by radiation =~ = For a permanent insertion Ti.

¢.g. decrease of yield Y due to radiation

Sometimes they are installed permanently in front of an experiment.

‘SN
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Example: GSI Installation for SEM and iC Y
N e A _~ U (P O A W

IC in Ar-gas at 1 bar

SEM in vacuum

Feed-through with
0 200 mm flange

Peter Forck, JUAS Archamps 34 Beam Current Measurement



Calibration of a SEM — "#
BN 7 NSRS TSGR P TFRRE=IE T
SEM must be calibrated to achieve 10 % accuracy — comparison to an IC

Example: GSI installation for various ion beams

T T TTTTIT T T TTTTT T T T TTTTI T 1 r1r1rg

U 300 MeV/u *

|
—
2]
N

—_
-

U 500 MeV g(

Xe 200 MeV/u 4
Xe 1095]ﬂeV/u,i

//‘f Kr (300 MeV /1
Ca 500 MeV/u y Kr 800 MeV/u
.

|
—
~J

S

I g Ne 300 MeV/u

/:*T Ne 1800 MeV,/u
# C 270 MaV/u

750 MeV/u

—
co

H
< I

measured factor f_ [C/ion]|
o

-19 yd

10 [ ! L0

—2 -1

10 10 10° 10’ 10°
specific energy loss dE/pdx [MeV/(mg/cm?)]

Result: Secondary electron yield: Y=e"/(po-dE/dx)=27¢/(MeV/mg/cm?).
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Summary for Current Measurement i
X ".m TN - moT /7 RS
Current is the basic quantity for accelerators!

Transformer: — measurement of the beam’s magnetic field
» magnetic field is guided by a high p toroid
» types: passive (large bandwidth), active (low droop)
and dc (two toroids + modulation)
» lower threshold by magnetic noise: about I, > 1 uA
» non-destructive, used for all beams
Faraday cup: — measurement of beam’s charge
» low threshold by I/U-converter: I, > 10 pA
» totally destructive, used for low energy beams
Scintillator, — measurement of the particle’s energy loss
IC, SEM: » particle counting (Scintillator)
» secondary current: IC—gas or SEM—surface
» no lower threshold due to single particle counting

» partly destructive, used for high energy beams

5N
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