Modern CMOS Image Sensors for Scientific and Industrial Camera Applications

Walter Tutsch & Gerhard Holst, PCO AG

Overview

- parameters of scientific image sensors to be improved...
- high speed CMOS image sensor
 - characteristics, camera, applications
- scientific CMOS (sCMOS) image sensor
 - characteristics, camera, applications
- summary

Parameters of scientific image sensors to be improved...

- higher resolution for larger field of view
- faster frame rate at higher resolution
- higher sensitivity and lower readout noise at low light levels
- higher dynamic to detect the whole range from weak to bright illumination in one image
- robust and reliable recording performance (no significant degradation over time)
- image quality
- image data transfer (time)
- image data processing and storage

Highspeed CMOS Image Sensor CMOS Image Sensor - Characteristics

- 2016 x 2016 pixel
- 1279 frames/s (full frame)
- 4502 frames/s @ 1008 x 1000 pixel
- 11.3 bit dynamic
- quantum efficiency ≈ 48 %
- 31.2 mm diagonal (11µm pixel pitch)

Highspeed CMOS Image Sensor pco.dimax - EMVA1288 Performance Data

{measured by EMVA1288 test laboratory, AEON Verlag & Prof. Jähne, HCI Heidelberg}

Highspeed CMOS Image Sensor pco.dimax Application - 2D & 3D Analysis

- safety tests
- 2D & 3D dynamic analysis
- component tests

Highspeed CMOS Image Sensor pco.dimax Application - 3D Measurement with Mirror Set-Up

- airbag inflation
- deformation under charge
- 2 x 1 Mpixel at 2500 frames/s

Highspeed CMOS Image Sensor pco.dimax Application - Measurement, Documentation, NASA

NASA competitive test with highspeed cameras: The start of the shuttle should have been recorded with maximum resolution at 400 fps

pco.

Highspeed CMOS Image Sensor pco.dimax Application - Measurement, Documentation, NASA

pco.

Highspeed CMOS Image Sensor Weisscam HS-2 - TV / Advertising / Broadcasting

camera system Weisscam HS-2

{courtesy of Stefan Weiss, www.weisscam.de}

Scientific CMOS Image Sensor

sCMOS Image Sensor

- high quantum efficiency:
 FI = 57% and BI > 90%
- low readout noise: rolling shutter < 1.4 e- rms global shutter < 2.8 e- rms
- 2560 x 2160 pixel
- 6.5 µm x 6.5 µm pixel pitch
- dynamic range > 1 : 22 000
- maximum frame rate 100 frames/s

ers ft	Digital control block		
Column Driv & Bias Lei	ADC Column Amplifiers	Column Driv & Bias Rig	
Row Control Top	PIXEL ARRAY 2560(H) + 32 x 1080(V) +16	Row Control Top	
Row Control Bottom	PIXEL ARRAY 2560(H) + 32 x 1080(V) +16	Row Control Bottom	
umn Drivers Bias Left	Column Amplifiers ADC	umn Drivers Bias Right	
Col &	Digital control block		

Scientific CMOS Image Sensor Pixel Architecture

{graphics & schematics courtesy of B. Fowler, Fairchild Imaging}

Scientific CMOS Image Sensor SEM cross section

{photo Fairchild Imaging}

Scientifc CMOS Image Sensor Comparison - CCD vs. emCCD vs. sCMOS

Parameter	Unit	Interline Transf. CCD	emCCD	sCMOS
sensor format	pixel	1.3M	1M (max.)	5.5M
pixel pitch	µm x µm	6.45 x 6.45	8 x 8	6.5 x 6.5
frame rate	fps	12 (@ 20 MHz)	> 30	100
readout noise	e- rms	4 - 7	< 1 (@ gain > 30)	< 1.4 (@ 30 fps)
QE	%	60 (FI)	60 (FI) / 90 (BI)	57 (FI) / 90 (BI)
dynamic range		3000 : 1 (@ 11 fps)	8500 : 1 (@ 30 fps)	22000 : 1 (@ 30 fps)

Scientifc CMOS Image Sensor Comparison - CCD vs. emCCD vs. sCMOS

Scientific CMOS Image Sensor sCMOS - first Results

800

Demonstration in June 2009 during the Laser -World of Photonics show, Munich, with a scientific CCD camera pco.2000 and a sCMOS prototype system

Scientific CMOS Image Sensor sCMOS - pco.edge

- camera link (full) interface
- trigger in / out

Scientific CMOS Image Sensor pco.edge – 15 bit dynamic

logarithmic scale

exposure time - 10 ms, f-stop=22, f=50 mm, rs

Scientific CMOS Image Sensor Applications

super resolution microscopy

aerial photography

widefield micros. with large field of view

solar cell quality control

Scientific CMOS Image Sensor Outlook - back illuminated sensor

Broadband Coating

CIS2051BI SN233 Measured OE

{data courtesy of Fairchild Imaging}

Summary

- Recent advances in CMOS technology prove, that newer CMOS image sensors start to have the qualities, which were expected for a while.
- The hitherto existing "wisdom", which states that high frame rates belong to the domain of CMOS image sensors while high image quality and lowest readout noise belong to the domain of CCD image sensors, is no longer valid.
- New structures of image sensors e.g. for extremely low readout noise have been realized as CMOS image sensors.
- Therefore the next generation of CMOS image sensors will be capable to open new application fields and help scientists to answer their questions.
- The image data transfer rate, the processing and archiving of large data volumes will be the next to be solved issues in the near future.

