Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams

> <u>Gero Kube</u>, Christopher Behrens (DESY), Werner Lauth (IKP, Mainz) gero.kube@desy.de

- Introduction
- Results of Test Experiment @ MAMI
- Outlook

Standard Diagnostics in Linacs: OTR

- transition radiation: electromagnetic radiation emitted when a charged particle crosses boundary between two media with different optical properties
 - visible part: Optical Transition Radiation (OTR)
- beam diagnostics:
- backward OTR (reflection of virtual photons)
 - typical setup: image beam profile with optical system
 - \rightarrow beam image and measurements of beam shape and size

angular distribution

OTR Diagnostics: Pitfalls

• OTR monitor observation with BC1, BC2 switched on

Consequences & Alternatives

- LCLS: coherent emission compromise use of OTR as reliable beam diagnostics
 - \rightarrow wire scanners for transverse beam diagnostics instead of OTR
- profile diagnostics based on transition radiation
 - reduce coherent effects: observation at smaller wavelength
 - → EUV/XUV transition radiation imaging

(in collaboration with Tomsk Polytechnic University, Russia and Institut für Kernphysik, Mainz University)

1.) spectral range of coherent emission ?

- 2.) EUV/XUV optics expensive and difficult to handle
- profile diagnostics based on different physical processes
 - wire scanners

- \rightarrow in preparation for dedicated positions @ XFEL
- luminescent screen monitors
- widely used at hadron accelerators

nearly no information for high-energy electron machines

motivation for test experiment

 \rightarrow

Inorganic Scintillators

• properties

- radiation resistant
- \rightarrow widely used in high energy physics, astrophysics, dosimetry,...
- > high stopping power \rightarrow high light yield
- > short decay time \rightarrow reduced saturation

• generation of scintillation light

energy conversion

```
(characterstic time 10^{-18} - 10^{-9} sec)
```

Formation of el. magn. shower. Below threshold of e^+e^- pair creation relaxation of primary electrons/holes

by generation of secondary ones, phonons, plasmons, and other electronic excitations.

> thermalization of seconray electrons/holes $(10^{-16} - 10^{-12} \text{ sec})$

Inelastic processes: cooling down the energy by coupling to the lattice vibration modes until they reach top of valence resp. bottom of conduction band.

> transfer to luminescent center $(10^{-12} - 10^{-8} \text{ sec})$

Energy transfer from e-h pairs to luminescent centers.

photon emission (> 10⁻¹⁰ sec)

radiative relaxation of excited luminescence centers

LIGHT EMISSION CENTERS

С

 \mathbf{E}_{g}

в

Implication on Transverse Resolution

Which effects may affect transverse resolution?

- light generation: energy conversion
- → transverse range of ionization

light propagation

 \rightarrow total reflection at scintillator surface

• energy conversion

> ,,thick target": formation of electromagnetic shower

(thickness in the order of radiation length X_0)

- transverse shower dimension: Molière radius as scaling variable
 - \rightarrow containing 90% of shower energy

$$R_M \approx 0.0265 \ X_0 (Z+1.2)$$

 X_0 : radiation length, Z: atomic number

F. Schmidt, "CORSIKA Shower Images", http://www.ast.leeds.ac.uk/~fs/showerimages.html

→ saturation range as scaling variable R_{δ}

Implication on Transverse Resolution

• extension radius

limiting value:

$$\left(R_{\delta} = \frac{c}{\omega}\sqrt{1 - \varepsilon(\omega)}\right)$$

 $\epsilon(\omega)$: complex dielectric function

> approximation as free electron gas (Drude model)

 $R_{\delta} = \frac{\hbar c}{\hbar \omega_p}$

 $\omega_{\rm p}$: plasma frequency $\hbar \omega_p = 28.816 \sqrt{\rho \langle Z/A \rangle} \text{ eV}$

• light propagation

> light generated inside scintillator has to cross surface

refractive index

inorganic scintillators

 \rightarrow high n, i.e. large contribution of total reflection

scintillators under investigation

- ▶ BGO: 0.5 mm
- **PWO:** 0.3 mm
- **LYSO:** 0.8 mm, 0.5 mm

(Prelude 420)

▶ YAG: 1.0 mm, 0.2 mm, phosphor

	ρ [g/cm ³]	ħω _p [eV]	R _M [cm]	λ _{max} [nm]	yield [1/keV]	n@λ _{max}	R _δ [nm]
BGO	7.13	49.9	2.23	480	8	2.15	3.95
PWO	8.28	53.3	2.00	420	0.1	2.16	3.70
LSO:Ce	7.1	51.3	2.08	420	32	1.82	3.85
YAG:Ce	4.55	45.5	2.77	550	11	1.95	4.34

Mainz Microtron MAMI

Experimental Setup

• target

Beam Images

• measurement and analysis: I = 46 pA5 signal and 1 background frame 31 LYSO:Ce **BGO** intensity 320 intensity 5 320 330 330 220 240 hor.pixel 220 240 hor.pixel (0.5 mm)(0.5 mm)19 3 4 0 350 350 tisua 2 ntensity 360 360 370 200 220 240 260 180 200 220 240 260 pixel 370 340 vert. pixel 340 vert.pixel 220 240 260 pixel 310 310 > LYSO:Ce **PWO** ntensity 320 320 330 330 220 240 260 280 hor.pixel (0.8 mm)(0.3 mm)a 4 0 . 350 350 intensity 5 360 360 370 200 220 240 260 280 pixel 370 200 220 240 260 280 pixel 340 vert. pixel 340 vert.pixel 310 260 280 intensity intensity 0.5 > YAG:Ce > YAG:Ce 320 300 330 320 250 300 hor.pixel 220 24 hor.pixel 350 (powder) (1mm)• 19 Xid 340 19 340 360 350 different scale! 380 intensity üe o.s 360 400 370 180 200 220 240 260 pixel 420 300 350 vert.pixel 340 vert. pixel 400 250 300 350 pixel 200 310 200 > YAG:Ce Al_2O_3 320 250 330 300 260 280 hor.pixel 200 hor.pixel (0.2 mm)a 40 (0.5 mm)bixel 350 350 400 360 450 370 220 240 260 280 300 220 240 pixel 340 vert. pixel 200 300 400 100 200 pixel 300 vert. pixel

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011

Results

• vertical beam size

horizontal beam size

-

mean values

dependency on observation geometry

Gero Kube, DESY / MDI

Observation Geometry

- beam diagnostics
 - \rightarrow popular OTR-like observation geometry:
- scintillator tilt versus beam axis

• measured beam spots

- ▶ 45°tilt of screen
- observation under 90°
- BGO crystal
- micro-focused beam
- ▶ I = 3.8 nA

Simulation of Light Propagation

Analysis:

- ZEMAX calculation of 2-dim PSF
- calculation of 2-dim beam profile
- convolution of PSF and beam profile
- horizontal / vertical projection of resulting distribution
- determinatiuon of 2nd moment (standard deviation)

Gero Kube, DESY / MDI

Workshop on Scintillating Screen Applications, 15.2.2011

- satisfactory agreement between simulation and measurement
 - \rightarrow simulation reproduces observed trend in beam size
- measured beam size systematically larger than simulated one
 - \rightarrow effect of extension radius not included in calculation \rightarrow increase in PSF
- results summarized in IPAC'10 proceedings: G. Kube, C. Behrens, W. Lauth, MOPD088

Future Plans

- continue search for optimum scintillator material
- direct comparison with OTR diagnostics
- influence on observation geometry for different materials (and thicknesses)
 - → new test experiment @ MAMI, March 2011
- COTR generation at scintillators
 - \rightarrow contribution of M. Yan

open points

- influence of luminescent centers on resolution
 - \rightarrow different dopands, different concentration ?

• screen saturation

saturation at high intensities (> 0.04 pC/cm^2) observed for YAG:Ce screens (A. Murokh et al., Proc. PAC 2001, 1333)

- \rightarrow material properties of interest: \rightarrow band gap
 - scintillation decay time

Luminescent Types

• Exciton luminescence: BGO, ...

Ionization/excitation by radiation creates unbound e-h pairs or bound e-h pairs called excitons. Excitons can move rather freely in crystals, caught at impurities, defects, and so on, and the STE (self-trapped excitons) gives luminescence upon radiative recombination.

• Dopant luminescence: GSO:Ce, ...

Radiative recombination of STE at dopant (activator) ions.

• Charge-transfer luminescence

Belongs to exciton luminescence. Due to charge transfer where initial and final states are different, selection rules for EM transition are loosened, thereby enhancing transition probability.

• CVL (Core-valence luminescence, Cross luminescence)

After excitation of the core-valence electron, an electron in the valence band recombines with the resultant hole radiatively. To avoid Auger process, $E_{VC} < E_g$ is necessary. BaF₂, CsF, LiF,.....

M. Kobayashi (KEK): Introduction to Scintillators

Workshop on Scintillating Screen Applications, 15.2.2011

-6.2 eV7

(VB)

• luminescence in configurational coordinate diagram

M. Kobayashi (KEK): Introduction to Scintillators

R = inter-atomic distance between ground state of ligand atom and the excited state of luminescence centre atom