

Status of mCBM@SIS18

C.Sturm for the CBM Collaboration

The high-performance free-streaming DAQ system of CBM

Experiments exploring dense QCD matter: Rate capabilities

FAIR SIS100 energies (Au ions)				
E_{kin}^{lab} [A·GeV]	$\sqrt{S_{NN}}$ [GeV]			
2	2.7			
4	3.3			
8	4.3			
11	4.9			
14 (Ca) 29 (p)	5.5 7.6			

<u>CBM's unique feature:</u> ultimate rate capability for high statistics measurement of rare probes

A CBM full-system test-setup at GSI/FAIR: *mCBM@SIS18*

- offline data analysis
- controls
- detector tests of final detector prototypes

mCBM @ SIS18 facility

Beam time retreat, February 23, 2018

C.Sturm, mCBM

4

mCBM Cave (HTD @ SIS18 facility)

- modified switching magnet (HTD MU1)
- new beam dump
- additional shielding

FLUKA calculations (right fig.): 10⁸ Au ions s⁻¹, 1.24 AGeV, 2.5 mm Au target (P_{int} = 10%) vertical section: **beam level**

Beam time retreat, February 23, 2018

Status of the cave reconstruction

Beam time retreat, February 23, 2018

C.Sturm, mCBM

Design of the mCBM test-setup

Example: mSTS integration

• • • • •

- 4 C-frames ("Units")
- holding the ladders with modules
- holding the read-out and powering electronics (FEB, C-ROB, POB) on cooling plates

The mTRD and mTOF subsystems

mTRD setup

4 layers TRD modules from DESY/CERN tests 2017

mTOF setup

25 MRPC(3a) counters (= 5x STAR modules) 150 x 120 cm² active area 1600 readout channels

@SIS1

Engineering design (CAD)

Schedule of mCBM@SIS18 construction

Schedule

Concurrent				
10/2017	cave & beam line: reconstruction started, procurement started			
12/2017	mDAQ test stand @ Heidelberg operational			
12/2017	beam dump mounted			
03/2018	cave reconstruction completed			
04/2018	mFLES cluster @ Green IT Cube installed			
05/2018	beam line installed and commissioned			
05/2018	installation of detector stations			
06/2018	start commissioning w/o beam			
08/2018	start commissioning with beam			

mCBM data taking

2018	development & commissioning		
	data transport, data analysis, detector tests		

2019 approaching full performance subsystems completed, high-rate data transport / processing \rightarrow online reconstruction

requested beam time was fully granted by the G-PAC

- 2020 1st benchmark run A reconstruction production runs benchmark coll. systems: Ni+Ni 1.93AGeV & Au+Au 1.24AGeV
- 2021 2nd benchmark run Λ reconstruction in Ni+Ni and Au+Au collisions at various projectile energies $\rightarrow \Lambda$ production excitation function

proposal to be submitted in 2019

<u> A - slope parameter:</u>

- smaller than proton
- not explained by transport models reason unclear:
 - rescattering cross section ?
 - repulsive potential ?

mCBM major goals for 2018

Start the CBM full system test:

- operate mTRD, mTOF (+ T₀ counter) and mSTS (1x station)
- data transport to mFLES @ Green IT Cube incl. event building
- parasitic beam: ions, T_{lab} > 1 AGeV & slow extraction (10s), 10⁵ 10⁶ s⁻¹ (\rightarrow ¹⁰⁷Ag/¹⁰⁹Ag 1.65AGeV is fine !)
- basic data analysis \rightarrow correlated hits between detector stations

Support by beam diagnostics team required. No show-stopper visible.

Beam time retreat, February 23, 2018

Backup

mCBM

	year	objective	projectile	intensity	extraction	$_{ m shift}$	number of shifts
(1)	2018	developing and commissioning	ions, 1 - 2 AGeV	$10^5 - 10^6 \text{ s}^{-1}$	slow, 10 s	para- sitic	30
(2)	2018	high-rate detector tests	ions, 1 - 2 AGeV	$10^6 - 10^7 \text{ s}^{-1}$	slow, 10 s	para- sitic	21
(3)	2019	approaching full performance	ions, 1 - 2 AGeV	$10^6 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	30
(4)	2019	running at full performance	Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	main	6

Table 9: Application for SIS18 beam time in the years 2018 and 2019 for mCBM.

"For this task, we apply (1) for 30 shifts of parasitic beam time, distributed over four development weeks. At the end of that year's block of SIS18 beam we apply (2) for 21 shifts (one full week) of parasitic beam time to perform high-rate detector tests." mCBM@SIS18 proposal, submitted on June 19, 2017

Announcement for beam time request 2020 - 2021

year	objective	projectile	intensity	extraction	$_{ m shift}$	number of shifts
2020	preparation of 1^{st} benchmark run	ions 1 - 2 AGeV, preferably: Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	15
2020	1^{st} benchmark run, Λ reconstruction	Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	main	15
2021	preparation of 2^{nd} benchmark run	ions 1 - 2 AGeV, preferably: Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	15
2021	2^{nd} benchmark run, Λ excitation function	Au, Ni 0.8-1.93 AGeV	$10^8 { m s}^{-1}$	slow, 10 s	main	15

Table 10: Preview for 2020 and 2021 of planned requirements on SIS18 beam time for mCBM.

Design of the mCBM Cave - HTD

Monte Carlo shielding calculations (FLUKA)

C.Sturm, mCBM

mCBM beam line

- T₀ diamond counter
- target ladder
- small permanent magnet (?) (to bend-out low-E δe)

vacuum: experiment

scintillation screen in front of the beam dump atmospheric pressure

mCBM – subsystems: STS, MUCH

mSTS: 2x stations Contribution by GSI

- 1st: 2x2 modules
- 2nd: 3x3 modules
 - = 5 half-ladders
 - = 13x 6x6 cm² sensors

mMUCH: 3x layers Contribution by India

- 3x M2 GEM modules
- 18x FEBs per module (STS-XYTER)
- used during CERN beamtest 2016

mSTS

mRICH

mPSD

PSD supermodule – array from 3x3 modules. total size 600 x 600 x1650 mm³, total weight \approx 5t.

proposed for mCBM: 60 cm 60 cm open issues: mounting structure read-out system -PaDiWa & TRBnet? \rightarrow synergy with mRICH \rightarrow proposal: installation for phase II / 2019

Example: mSTS integration

Units 02 and 03 ("station 1")

Example: mSTS integration

mCBM read-out and data transport Start version

mDAQ and mFLES 2018 (start version)

Example: read-out chain for mSTS

Common GBTx Readout Board

STS modules fully featured prototype 8 STS-XYTER currently being tested and **µTCA crate with AFCKs FLES IN with FLIBs** commissioned v2.0 on FEB-8 will enough CROB be available in time for mCBM? copper link optical link optical link Green Cube DAQ container on detector

mCBM read-out, data transport and processing Final version

mDAQ and mFLES 2019 (SIS100 version)

present design

		Device	Function	Location
1	70x	GBTx	data concentrator	Cave, on detector
2	6x	CRI	FPGA board (1x layer only)	DAQ container
3	2x	mFLES input node	Input stage	DAQ container
4	96x	Optical fibers	Data transport	$DAQ \to Green \; IT \; Cube$
5	42x	mFLES compute nodes	Processing stage	Green IT Cube

mCBM – support infrastructure

mCBM optical link to the Green IT Cube

multi-mode fiber cave – DAQ container, about 50m distance
 single-mode fiber DAQ container - GC, about 300m distance
 to be installed in April 2018

C.Sturm, mCBM

Hit rates at mCBM (simulation)

Input: UrQMD, Au+Au 1.24 AGeV, mbias, incl. δ-electrons + • • •

mSTS, 1st station max. (design) rate: 1.5 MHz/cm²

mTOF

-60

-40

-20

0

max. (design) rate: 20 kHz/cm²

20

40

-100

-80

60

x, cm

$\Lambda \rightarrow p\pi^{-}$

Feasibility study using *mSTS* & *mTOF* (3x stations):

- straight track candidates $mTOF \rightarrow mSTS$ (hit station-0, hit station-1) assuming primary vertex on (0,0,0)
- proton and pion candidate by selection on transverse distance to primary vertex
- momenta from time-of-flight assuming proton and pion mass \rightarrow p, M_{inv}

mCBM benchmark observable: A reconstruction

Simulation input: 10⁸ UrQMD events, min. bias

в

A production at SIS18 energies – mCBM reference data

HADES

Au + Au 1.23 AGeV

Ni + Ni 1.93 AGeV

M. Merschmeyer et al. (FOPI), PRC 76, 024906 (2007)

Physics of the benchmark observable

<u>Data:</u>

HADES : Eur. Phys. J. A (2011) 47 FOPI : PRC 76, 024906 (2007)

IQMD transport calculation: C.Hartnack et al., PR 510 (2012)

<u>A - slope parameter:</u>

- smaller than proton
- not explained by transport models
- reason unclear:
 - rescattering cross section ?
 - repulsive potential ?

Backup

CBM intro

Experimental challenges

Perform measurements at unprecedented reaction rates

- $10^5 10^7 Au + Au$ reactions/sec
 - \rightarrow fast and radiation tolerant detectors
 - \rightarrow free-streaming read-out electronics
- → high speed data acquisition and high performance computer farm for online event selection

Identification of leptons and hadrons

Determination of (displaced) vertices ($\sigma \approx 50 \ \mu m$)

momentum resolution $\delta p \ / p \cong 1\%$

Central Au+Au at 25 A GeV / UrQMD+GEANT4 160 p, 450 $\pi^{\scriptscriptstyle +}$ + $\pi^{\scriptscriptstyle -}$, 44 K+, 13 K-

CBM Collaboration: 55 institutions, 470 members

China:

CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Chongqing Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague

France: IPHC Strasbourg

Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ.

ZIB Berlin

Germany:

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ.

Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest

Hungary:

KFKI Budapest Eötvös Univ.

Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow VBLHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

Beam time retreat, February 23, 2018

C.Sturm, mCBM