

IBIC 2014

Abstract

Quadrupolar or beam envelope oscillations give valuable information about the injection matching and the incoherent space charge tune shift. An asymmetric capacitive pick-up was installed at GSI SIS-18 to measure these oscillations. We present the simulations performed to estimate and compare the sensitivity of the quadrupolar pick-up to the beam quadrupolar moment with respect to other pick-up types installed at SIS-18. Dedicated measurements with high intensity beams are performed at injection where the injection mismatch excites the envelope oscillations. The frequency spectra of the measured quadrupolar signal under various intensities give a direct measure of the space charge tune shift.

Quadrupolar moment and signal

The image current induced by the beam at the pickup (PU) electrodes are given by [1],

1 x 10¹³ p

Data Acquisition and signal processing

Fig. 5 BBQ based quadrupolar signal acquisition.

- Beam envelope is detected using diode based peak detectors [2]. There is a trade-off between time-constant and pick-up transfer impedance.
- Peak detector suppresses the common mode signal.
- The peak detector outputs are connected in quadrupolar configuration to suppress the dipolar signals.
- The quadrupolar signal in processed with a 12 bit ADC equipped real time spectrum analyzer.

Measurements and Results

Table.1 Beam parameters for the N^{7+} beam experiment

Parameters Values	5
-------------------	---

Beam experiments were performed at injection with an unbunched beam i with the parameters given in Table 1. Beam emittence in measured with Ionization profile monitor.

Fig. 3 Symmetric pick-up installed in SIS-18.

- 2), symmetric pick-up (Fig. 3) and shoe-box pick-up [not shown]
- The simulation is performed electrostatically assuming long bunches compared to pick-ups as is the case at SIS-18.
- The best pick-up in terms of sensitivity and transfer impedance is the asymmetric pick-up (Fig. 2).

Fig. 6 The lower schematic shows a stationary beam with position (\bar{x}, \bar{y}) and rms dimensions $(\bar{\sigma}_x, \bar{\sigma}_y)$.

The fractional horizontal and vertical tune peaks (Q_x^f, Q_y^f) due to position oscillations are visible. Also, the peaks at twice the betatron tune $(2Q_x^f, 2Q_y^f)$ due to the second order

W_{kin} (MeV/u)	11:45
I _{beam} (mA)	0.6-6
ϵ_x , $\epsilon_y(2\sigma)$ (mm-mrad)	32;51
Q_{x0}, Q_{v0}	4.21, 3.3

Fig. 8 The quadrupolar signal spectra with varying beam current

- Three subsequent spectra for increasing currents are shown. The current was varied from the UNILAC, such that the injection parameters were unchanged.
- While the positon related oscillations are relatively independent of space charge effects, the envelope oscillation mode shifts proportional to space charge tune shift.
- This provides a method for direct measurement of space charge tune shift.
- Only horizontal beta mismatch occured for the set injection settings.
 - .The highest intensity spectra from Fig. 8 is shown for first 800 turns.
 - Coherent beam envelope oscillations are damped in less

The upper schematic shows the beam position and size oscillations after the position and beta mismatch[3]. The beam position oscillations are given by betatron tunes (Q_x, Q_y) and envelope oscillations are $Q_{coh,1}$ for horizontal plane and $Q_{coh,2}$ for vertical plane.

beam position terms x^2 , y^2 in κ are seen.

The component due to beam envelope oscillations in horizontal plane is also clearly visible. The frequency of coherent envelope oscillation is dependent on space charge[4,5],

 $Q_{coh,1} = 2Q_{x0} - \left(1.5 - 0.5\left(\frac{\sigma_x}{\sigma_x + \sigma_y}\right)\right) \Delta Q_{sc,x} \qquad (Eq. 2)$

Summary and Outlook

• Three pick-ups were simulated to compare for their sensitivity to the quadrupolar moment of the beam.

• Envelope oscillations induced by injection mismatch were measured under various beam intensities.

• The coherent quadrupolar oscillation mode in the horizontal plane was measured and a clear correlation of mode frequency shift with the space charge tune shift was found.

• Quadrupolar exciter installation and optimization of the pick-up is foreseen.

than 200 turns, while position related oscillations are sustained for a longer time. Space charge tune shift play a direct role in fast

References

- 1) R. Miller et al., "Non invasive emittance monitor", PAC83, Washington, 1983.
- 2) M. Gasior et al., "The principle and first results of betatron tune measurement by direct diode
 - detection", LHC-Project- Report-853 ; CERN-LHC-Project-Report-853. 2005. 31p.
- M. Minty et al., "Injection envelope matching in storage rings", Proc. 1995 Part. Acc. Conf. and Intl. Conf. on High Energy Accel (Dallas, TX, 1995) 536
- 4) W. Hardt, "On the incoherent space charge limit for elliptic beams", CERN/ISR/Int. 300 GS/66.2.
- J. Hofmann, "Stability of anisotropic beams with space charge" Physical Review E 57 (4), 4713.