Abstract

Peanuts are tasty.

1 Overview

Programmable hardware is increasingly deployed in large, physically distributed
control systems. Hard real-time systems especially benefit from the determin-
ism and low latency of purpose-built hardware. As reconfigurable hardware
components replace traditional software-based systems, those hardware compo-
nents must often communicate directly, over longer distances. While traditional
protocols like CORBA and SOAP provide an excellent abstraction for software-
to-software communication, they are a poor fit for hardware-to-hardware com-
munication. Hardware components typically transfer information in read/write
bus cycles as opposed to the procedure calling interfaces seen in software.

The Etherbone protocol takes an existing bus standard (Wishbone [?]) and
extends this bus to run over the network. A concrete bus standard was cho-
sen, because different bus protocols often differ enough that conversion reduces
fidelity. Wishbone was chosen because it is an open standard, simple, and pipe-
lining. The underlying transport protocol is left open, as Etherbone’s require-
ments are easily met. This specification defines Etherbone for UDP and TCP.

Etherbone’s key features are:

Bus-cycle interface

Deterministic latency

Simple hardware implementation
Cut-through /wormhole operation
Compatible with software implementations
Separate config/control address space
Negotiable bus/address widths

Etherbone leaves these issues to the lower transport layer:

Exactly once delivery (TCP or reliable layer 2)
Cut-through switching

Authentication (physical access or TLS)
Confidentiality

Etherbone was designed for the following use cases:

High-precision system control
Sensor data acquisition
System diagnostics

Remote debugging
Distributed bus bridging
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Figure 1: Etherbone system in hardware
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Figure 2: Etherbone system in software

2 Architecture

Etherbone (EB) connects two Wishbone (WB) buses together as shown in Fig-
ure 1. The WB Intercon is a local bus, for example a crossbar interconnect.
When a WB master wishes to write to a remote slave, it writes to the EB
bridge, which is a local WB slave. The bridge, acting as an EB master, trans-
lates the request into an EB frame (Section ??) and routes it to the receiving
EB slave. That slave decodes the request and executes the write over Wishbone.
Finally, the WB interconnect routes the write to the correct slave.

FEither or both of the devices in Figure 1 may be replaced by software, as
shown in Figure 2. In this scenario, the operating system buffers and sends
Etherbone frames as requested by the Etherbone software library. Client ap-
plications may use this library for remote access to any slave attached to an
Etherbone equipped wishbone bus. This facilitates such tasks as debugging,
firmware updates, and monitoring from a dekstop system. Applications may
also attach devices to a virtual wishbone bus, perhaps to capture bus cycles or
trigger an alarm. These virtual devices may be mapped into the Wishbone bus
of other Etherbone nodes, hardware or software.

2.1 Addressing

Slaves on a Wishbone bus have a mapped address range. Masters read and
write to an address on the local bus and the Intercon routes the operation to
the matching slave device. However, with the introduction of Etherbone, there
are now multiple reachable Wishbone buses in the facility-wide system. To
select the destination slave, additional address information is required.



When using the software interface, an application acquires a handle object
for the remote bus. Reads and writes are then performed via the handle object,
requiring only the WB bus address per operation. To acquire the handle object,
the application supplies the hostname and port of the remote WB bus.

For a hardware implementation, the requests come from a local WB master,
which can only provide a WB bus address. To determine the missing address
information, an EB bridge must infer the destination WB bus based only on
the local WB address requested. To achieve this, the EB bridge establishes a
configurable mapping from local WB addresses to destination hostname:ports
and target WB addresses.

For example, consider an EB bridge occupying address range 0x1000-0x3000
on the local bus. There is a remote WB bus available on the the host exam-
ple.com:3434. We would like to access the address range 0x100-0x200 on that
bus. Thus, we configure our EB bridge to map this range as 0x2000-0x2100
on the local bus. Now, when a WB write on our local bus to address 0x2050
is performed, the bridge transforms this into an EB write destined for exam-
ple.com:3434 at address 0x150.

2.2 Pipelining

Unlike a local WB bus, where devices answer in a few clock cycles, a remote
bus accessed via EB has a much high latency. For a 100MHz bus and a distance
of only 20km the difference is 10ns to 100us. For Internet-scale distances, the
latency can easily rise to 100ms. Therefore, an application which only issues a
new read/write operation when the previous operation completes will perform
10 to 107 times slower over EB than direct WB.

EB supports pipelining to overcome this significant performance bottleneck.
Instead of issuing a single operation at a time, an application/device can issue
new operations without waiting for the previous operation to complete. The
results of the operations will arrive in the same order they were issued. When-
ever new operations do not dependend on still incomplete operations, this can
almost entirely mask the performance lost to remote access.

As an example, considering two application using EB. The first application
is a firmware writing tool that needs to write the firmware and confirm the
firmware was written correctly. This problem can be readily pipelined; the op-
erations have an order requirement (confirmation happens after write), but the
choice of operation to issue does not depend on previous results. The firmware
writer can issue a sequence of WWWW...RRRR... operations in the pipeline
without waiting. Alternatively, it might also use the sequence WRWRWR... to
confirm each word immediately after writing it. In both cases, the application
can issue all of the operations without waiting. This would not be possible if the
application were to iterate a remote function. Suppose the application wants
to compute f(f(f(...f(x)...))) using a remote WB slave to calculate function f.
Here, the aplication writes z to the remote slave and reads back y = f(z). Then
the application writes y to the remote slave and reads back z = f(y). The write
pattern WRWRWR... is the same as the firmware loader, but here we can only



pipeline a single write-read operation pair together. Until we have received the
result f(z), we cannot issue f(y).

In Wishbone, several operations can be grouped into a single bus cycle. A
particularly bad situation that can occur is when dependencies appear within
a WB cycle. Generally, WB cycles acquire the device for use until cycle com-
pletion. On a local bus, any access pattern will work, as the operations will
complete quickly and release the cycle line. However, when this happens with
EB-sized latencies, a cycle might tie up a device for potentially unacceptable
duration. Consider for example a WB cycle that reads from one address and
writes the result to another address. Locally, there is no problem; the entire
WB cycles executes in a few nanoseconds. However, when that same access
pattern runs over the network, the slave device needs to wait for the read result
to travel to the master and the final write to travel back. A very bad design.

Dealing with data dependencies within a cycle is a major complication ad-
dressed in the different implementation options described in Section 5.5.

2.3 Config Space

1! always bigendian

In addition to remote bus access, Etherbone also provides a configuration
space. This config space is used to specify transmission parameters, recover bus
error status codes, and match read results to the requests.

The config space is a complementary 16-bit wide memory map attached
to every EB slave. EB requests can read/write to this configuration space in
addition the the normal WB bus. The data port width of the config space
always matches the data port width negotitated for EB.

The config space is divided up into two regions: the register space and the
implementation space. All addresses in the register space correspond to EB
control registers, specified in this document. The register space spans addresses
0x0-0x7FFF. The implementation space is guaranteed to be free for whatever
use a hardware/software implementation chooses. The implementation space
spans 0x8000-0xFFFF.

Two important registers in the address space include the error status reg-
ister, which reports WB error status codes, and the WB device map pointer,
which provides information about the slaves attached to a remote bus. The im-
plementation space is typically used by an EB master to receive the data which
it read. Reads to an EB device trigger a write back to the source EB device.
Those writebacks are often sent to the implementation space where they can be
handled by the EB core/code and invisible to the WB bus.

2.4 Bus Widths

11" discuss width in header =; port width as opposed to operation width using
select lines

In Wishbone, a bus may have a port width that is 8/16/32/64 bits wide.
Thus, a master in one WB bus might write 32-bits at a time, while a slave in



another WB bus expects 16-bits at a time. Etherbone makes no attempt to
convert between differing port widths, because converting a 32-bit write into
two 16-bit writes might change semantics.

However, Etherbone does negotiate which port widths are acceptable to both
devices. This mostly affects software, which can meaningfully support access
with different port widths. Hardware implementations will typically advertise
and accept only one width.

Address spaces in WB are conceptually infinite, but in practice are con-
strained to a fixed width. Address width conversion, as oppposed to port
width conversion, is relatively straight-forward. Address 0x0400 is that same as
0x00000400. If a 32-bit device is accessed by a 16-bit device, the 16-bit device
can only see the low 16-bits of the larger device’s address space.

Address width is negotiated by Etherbone simply to determine the amount
of space to reserve for message exchanges. A hardware implementation is free to
only advertise address widths whose message alignment is convenient to them.

3 Real-time Deployment

One of the key features of Etherbone is that it can used with hard realtime
constraints and extremely low latency. In this scenario, Etherbone only forms
a small part of the complete system. To meet deadlines, presumably most com-
ponents must make timing guarantees. The Etherbone software library, due to
its dependency on the host operating system, cannot guarantee responsiveness.
Therefore, in a hard real-time system, the software library can be used neither
as slave nor master.

Beyond those timing requirements imposed externally, Etherbone requires
attached slave devices to respond quickly. As detailed in Section 5.4.3, Ether-
bone slaves can use cut-through request processing to avoid buffering delays. In
this situation,

3.1 Multimaster competition

3.2 Master-Slave cross-talk
3.3 Cut-Through

4 Programmer Guide

Etherbone is designed to transport the Wishbone bus over the network. In the
Wishbone bus, every participant is either a master or a slave. Only masters
may issue requests and only slaves may service them.

A request is either a read or a write and includes the target address. If the
request is a write, it also includes the word to store. A response includes a
success/failure status bit and (if a read) the word read.



Etherbone is pipelined. A master may issue multiple requests without wait-
ing for a response. These requests are transmitted in ordered batches called a
cycle. This pipelined behaviour is essential for high throughput over a network.

An application may use Etherbone to implement either a bus master or slave.
For both scenarios there is a hardware and software interface.

4.1 Software Interface

The Etherbone software library relies on the host operating system to implement
TCP and UDP. Therefore, strict timing requirements cannot be assured and
maximum throughput will be somewhat below the physical limit. Nevertheless,
this interface to Etherbone is useful since the application can leverage a higher-
level development enviroment.

4.1.1 Etherbone Sockets

All interaction with the Etherbone library begins with opening an Etherbone
socket using eb_socket_open. The socket is used to send and receive Ether-
bone messages over TCP or UDP. In order for the library to process incoming
messages, the socket must be regularly polled by the application. Be aware
that the Etherbone library is not thread-safe. All access to a socket and any
derived objects must be from a single-thread. Different threads may make use
of distinct sockets safely, however.

There are three approaches a software Etherbone application can take to
managing activity on the Etherbone socket:

1. Watch the Etherbone socket for activity in an external event loop, for
example, a GUI’s top-level main loop. To support this, the method
eb_socket_descriptor allows access to the underlying operating system
socket descriptor. The external framework can then watch this for read-
ability, and call eb_socket_poll to process the pending messages.

2. Regularly call eb_socket_poll while doing calculations. This frees the ap-
plication to fully utilize the CPU for calculations, but still handles Ether-
bone messages. The responsiveness and performance of Etherbone in this
scenario will depend on how frequently eb_socket_poll is called. Ev-
ery 1-4ms is a good target. If there are no calculations to perform, this
approach wastes a lot of CPU time needlessly testing the socket.

3. Use eb_socket_block to halt the application until messages arrive. Then,
run eb_socket_poll to process the events. Repeat until Etherbone is no
longer of interest to the application. As opposed to polling, this lets the
CPU idle when there is no pending traffic.

Figure 5 lists the prototypes of the relevant methods. See Figure 3 for an
explanation of the types, and Figure 4 for the potential return codes. The socket
may be either TCP or UDP as controlled by the mutually exclusive eb_flags_t
options EB_.UDP_MODE and EB.TCP_MODE. A valid port width argument
is the bitwise OR of EB_.DATA{8,16,32,64}, or EB.DATAX for all of them.



Type Purpose

eb_status_t An error status result from an Etherbone APT call. Can
be converted to text with eb_status(). Takes values from
Table 4.

eb_socket_t Top-level object handle used in the Etherbone library.
An application must first create a socket to use any other
library feature.

eb_flags t Options which control the type of eb_socket_t created.

eb_width_t A bitmask which lists acceptable Wishbone bit widths.

eb_descriptor_t

eb_address_t

eb_data_t

eb_cycle_t

eb_device_t
eb_network_address_t
eb_handler_t

eb_user_data_t

8/16/32/64 are the possible alternatives.

An operating system specific socket handle. This can
be extracted from an eb_socket_t to use with operating
system event handling.

A 64-bit wide unsigned integer type for Wishbone ad-
dresses. If the software application only advertises a
16-bit address bus, the unused high bits are required to
be zero.

A 64-bit wide unsigned integer type for Wishbone data.
If the negotiated bus port width is less than this, the
unused high bits are required to be zero.

A collection of queued Wishbone read/write operations.
Operations are executed in order with the target device
held busy for the cycle duration. Operations will not
begin execution until the cycle is closed.

A handle to a remote Wishbone bus. Used to open a
new eb_cycle_t.

A hostname:port string used to identify a remote Ether-
bone bridge.

A virtual Wishbone device. These may be attached to
an eb_socket_t and accessed remotely.

An opaque pointer type. Whenever an Etherbone li-
brary permits a user callback function, a eb_user_data_t
may be supplied that is provided to the callback upon
completion. This is useful to record state associated
with the operation needed upon completion.

Figure 3: Etherbone software library type definitions

Similarly, EB_LADDR{8,16,32,64,X} defines the acceptable address widths. The
header files provide detailed pre- and post-conditions for using the methods.
4.1.2 Master Mode

An Etherbone application can become a master on a remote Wishbone bus. To
begin this mode of operation, the application first opens the remote bus with



Status Code

Purpose

EB_OK
EB_FAIL
EB_ADDRESS
EB_WIDTH

EB_BUSY

The operation completed successfully.

The operating system reported an error.
Invalid address; too large for the negotiated bus.
Invalid data; too large for the negotiated bus.

EB_OVERFLOW | Cycle length was too long for the chosen proto-

col. This only applies to UDP transport.
The object cannot be closed as it is in use by
derived objects.

Figure 4: Etherbone result status codes

eb_status_t eb_socket_open (

int port ,

eb_flags_t flags ,

eb_width_t supported_addr_widths ,

eb_width_t supported_port_widths ,

eb_socket_t*x result);
eb_status_t eb_socket_close (eb_socket_t socket);
eb_status_t eb_socket_poll (eb_socket_t socket);
int eb_socket_block (eb_socket_t socket,

int timeout_us);

eb_descriptor_-t eb_socket_descriptor (eb_socket_t socket);

Figure 5: Etherbone socket control methods




eb_status_t eb_device_open (

eb_socket_t socket ,

eb_network_address_t ip_port,

int attempts ,

eb_device_tx result);
eb_status_t eb_device_close (eb_device_t device);
eb_socket_t eb_device_socket (eb_device_t device);

eb_width_t eb_device_port_width (eb_device_t device);
eb_width_t eb_device_address_width (eb_device_t device);

Figure 6: Etherbone remote bus access methods

eb_device_open. This initiates negotiation of the bus address and data widths,
resulting in a wire format to be used for Etherbone cycles. The relevant methods
appear in Figure 6.

Thereafter, the Etherbone application creates bus cycles. Each cycle per-
forms a sequence of read or write operations '. Until the cycle is closed, it is
not queued to be sent. Thus, data dependencies (Section 2.2) within a cycle are
prevented, greatly improving the responsiveness of Etherbone.

Because network protocols perform most efficiently with larger transfers, the
Etherbone library delays transmission of a cycle until either the local buffer is
full or the the buffer is flushed with eb_device flush. The methods involved
are listed in Figure 7,

Putting this all together, to write to a remote register an Etherbone appli-
cation needs to take these steps:

Open an Etherbone socket (eb_socket_open)

Open an remote device’s bus (eb_device_open)
Begin a new Wishbone cycle (eb_cycle_open)
Enqueue a write operation (eb_cycle_write)

Mark the end of the cycle (eb_cycle_close)

Flush the buffers out the socket (eb_device_flush)
Close the device and socket or begin a new cycle.

No ot WD

After a cycle has been executed remotely, the application-supplied callback
will be invoked indicating that the reads have completed and providing error
status for each operation.

Due to the packet format of Etherbone (Section 5.1), be aware that writing
sequentially is more bandwidth efficient than random access.

IFor UDP sockets, only 150 operations may be queued per cycle.




typedef void (xeb_cycle_callback_t)
(eb_user_data_t , eb_status_t, eb_bool_tx*);

eb_cycle_t eb_cycle_open_read (
eb_device_t device ,
eb_user_data_t user ,
eb_cycle_callback_t <c¢b);

void eb_cycle_close(eb_cycle_t cycle);
void eb_cycle.read (eb_cycle_t, eb_address_t, eb_data_t* data);
void eb_cycle_write(eb_cycle_t, eb_address_t, eb_data_-t data);

void eb_device_flush(eb_device_t socket);

Figure 7: Etherbone remote cycle methods

4.1.3 Slave Mode

An Etherbone application can register virtual devices on a simulated Wishbone
bus. These devices may then be remotely accessed by Etherbone masters. There
is one virtual bus per Etherbone socket. The EB address is the application
system’s hostname and the port provided on socket creation.

For maximum interoperability, software slave devices should support access
at any data width; this is not much of a burden when compared with hardware.
Slaves on a socket must all share the same supported address and port widths,
as they are all on the same virtual Wishbone bus.

A virtual device claims a base address and mask, in the virtual socket bus.
This address range must not overlap any other virtual slave devices attached to
this socket. Address decoding and bus arbitration are handled by the library
internally.

Each virtual device provides a read and write callback, as shown in Figure 8.
These callbacks must return immediately and may not generate a bus error.
Accesses to unmapped virtual addresses will always produce a bus error.

4.2 Hardware
To be written by Matthias.

5 Protocol and Implementation

This section details the Etherbone protocol. All conformant devices must adhere
to the message format outlined in Section 5.1. Optional design considerations
are explicitly indicated in the text. Every other behaviour described in this
section is mandatory for a conforming Etherbone hardware or software imple-
mentation.
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typedef struct eb_handler {
eb_address_t base;
eb_address_t mask;

eb_user_data_t data;

/* Values for Wishbone device autodiscovery */
uint1l6 wbd_version;

uint32_t vendor;

uint32_t device;

uint32_t wbd_flags;

uint32_t hdl_class;

uint32_-t hdl_version;

uint32_t hdl_date; /+ e.g: 0xz20111225 — christmas 2011 x/

eb_data_t (*read) (eb_user_data_t, eb_address_t, eb_width_t);

void («write) (eb_user_data_t , eb_address_t, eb_width_t,
eb_data_t);

} *eb_handler_t;

eb_status_t eb_socket_attach(eb_socket_t, eb_handler_t handler);
eb_status_t eb_socket_-detach(eb_socket_-t, eb_address_-t address);

Figure 8: Etherbone virtual device methods
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Figure 9: Etherbone hardware

5.1 Message Format

0 4 7 8
Magic (0x4EGF)
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Probe identifier or potential padding to 64-bit alignment

BCA|RCA|RFF CYC[WCA|WFF]

WCount RCount

Potential padding to 64-bit alignment

BaseWriteAddr

WriteVal 1

WriteVal 2

WriteVal N

EB Record (Repeats)
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5.1.1 Etherbone Header

An Etherbone message contains an Etherbone header followed by a sequence of
records. Records are processed in the order they appear in the message.

All reserved fields (indicated in grey) must be cleared to 0. All numeric
values have bigendian format. Packet alignment is max(16, AddrSz, PortSz).
For Etherbone version 1, this is either 16, 32 or 64 bits.

The Etherbone header immediately follows the encapsulating UDP or TCP
header. If the packet alignment exceeds 32-bits, the header is followed by zeros
padding to the alignment size.

Magic As Etherbone is layered atop UDP or TCP, stray messages might find
their way to Etherbone endpoints. In order to indentify the Etherbone protocol,
every valid Etherbone message includes the value 0x4E6F as a prefix. Any
packet missing this magic protocol identifier must be dropped.

Version This document describes Etherbone version 1.

Future Etherbone revisions must retain support for obsolete Etherbone mes-
sages formats. Etherbone responses must use the same version as the request
which triggered the response.

If an Etherbone device receives a request for an unsupported version, it
should ignore the request unless PF is set. When PF is set, the largest of the
requested version and the supported version should be returned.

PF The Probe-Flag (PF) is used to negotiate compatible bus width and ver-
sion. In a message with PF set, the highest Etherbone version supported appears
in Version. Furthermore, a probe message must be 64-bit aligned, so the 32-bit
pad is mandatory. The contents of AddrSz and PortSz will be ignored.

Upon receipt of a message with PF set, an Etherbone device should ignore
the remainder of the message and respond with an Etherbone header with the
PF field cleared. The supported address and data bus widths of the Etherbone
device should appear in the AddrSz and PortSz fields. The Version field should
contain the largest of the requested version and the supported version.

PR !l fixme !!!

The Probe-Flag (PF) is used to negotiate compatible bus width and version.
In a message with PF set, the highest Etherbone version supported appears in
Version. Furthermore, a probe message must be 64-bit aligned, so the 32-bit
pad is mandatory. The contents of AddrSz and PortSz will be ignored.

Upon receipt of a message with PF set, an Etherbone device should ignore
the remainder of the message and respond with an Etherbone header with the
PF field cleared. The supported address and data bus widths of the Etherbone
device should appear in the AddrSz and PortSz fields. The Version field should
contain the largest of the requested version and the supported version.

13



NR !l fixme !l!
The No-Reads flag (NR) is used to indicate ...

AddrSz In principle, Wishbone buses do not have a fixed address width.
The value AddrSz specifies the number of bits used to represent addresses in
Etherbone messages. Only the low address bits are included, any necessary
higher bits should be considered zero.

The values for AddrSz are listed below. They may be added together to
indicate support for multiple widths. When an Etherbone message contains
multiple AddrSz values or the receiving device does not support the selected
value, any content beyond the header is ignored.

AddrSz | Address bits
1 8

2 16

4 32

8 64

PortSz The Wishbone standard permits interconnection of slaves and masters
with bus data widths of 8/16/32/64. Masters must use the correct data bus
width when communicating with slaves. PortSz specifies the data bus width of
the target slave.

The values for PortSz are listed below. They may be added together to
indicate support for multiple widths. When an Etherbone message contains
multiple PortSz values or the receiving device does not support the selected
value, any content beyond the header is ignored.

PortSz | Data bus width
0 8

2 16

4 32

8 64

5.1.2 Record Header
Each record in an Etherbone stream includes a header. If the packet alignment

exceeds 16-bits, the header is followed by zeros padding to the alignment size.

RCA If the addresses read in this record should be taken from the config
address space, the RCA flag is set. Otherwise values will be read from the
Wishbone bus.

BCA If the BaseRetAddr is in the config space of the originating EB device,
the BCA flag is set. The value of this flag is copied to the matching WCA field.

14



RFF If the results of Wishbone reads should be written back to a FIFO reg-
ister located at BaseRetAddr, the RF flag is set. Otherwise read values will be
written sequentially starting at the BaseRetAddr.

CYC If the contents of this record are the last of a cycle, the CYC flag is set.
A receiving EB device should hold the cycle line high till it encounters this flag.

WCA If the values written in this record should be written to a the config
address space, the WCA flag is set. Otherwise values will be written to the
Wishbone bus.

WFF If the values written in this record should be written to a FIFO register,
the WF flag is set. Otherwise values will be written sequentially starting at
BaseWriteAddr.

RCount This Wishbone record includes RCount reads. The message will
include an equal number of ReadAddr fields.

WCount This Wishbone record includes WCount writes. The message will
include an equal number of WriteVal fields.

5.1.3 Read Data Section

Read fields are processed in order.

BaseRetAddr This field is present only if RCount > 0. If the AddrSz is
shorter than the packet alignment, the address is big-endian zero extended.
When it exists it indicates the address on the origin Etherbone endpoint to
which read results should written.

ReadAddr For each ReadAddr, a read operation to that address will be ex-
ecuted. Depending on the value of RCA, the address is either a config space
or Wishbone bus read. If the AddrSz is shorter than the packet alignment, the
address is big-endian zero extended. Results are written back to BaseRetAddr
on the origin endpoint.

5.1.4 Write Data Section

Write fields are processed in order.

BaseWriteAddr This field is present only if WCount > 0. If the AddrSz
is shorter than the packet alignment, the address is big-endian zero extended.
When it exists it indicates the address on the target Etherbone endpoint to
which values should written. If WCA is set, writes go to the config space,
otherwise the address is on the Wishbone bus.

15



WriteVal For each WriteVal, a write operation will be executed. If the PortSz
is shorter than the packet alignment, the value is big-endian zero extended. The
destination address is computed from BaseWriteAddr and WFF.

5.2 Config Registers

Config registers are always 64-bits wide. If PortSz less than 64-bit is supported,
a EB slave device must support sub-word access. For example, an 8-bit read to
address 7 must return the low 8-bits of register 0. EB master device access to
config registers must always be aligned. A 32-bit read to address 2 has undefined
result.
So far, there are only two config registers defined:

Register | Purpose

0 Error status. This shift register records the error status
for completed Wishbone operations. If the last opera-
tion was successful, the low bit of this register is zero.
Therefore, after an Etherbone master issues a cycle con-
taining 13 operations, it can read this register to deter-
mine the error status using the low 13-bits of the regis-
ter. Config space read/writes leave this register unmod-
ified.
8 Address of the Wishbone autodiscovery header. Every
Etherbone device must include somewhere in its con-
fig address space a Wishbone autodiscovery structure.
This structure describes all devices attached to the local
Wishbone bus.

5.3 UDP and TCP streams

The Etherbone protocol is embedded directly in both UDP and TCP. In both
cases, the protocol format and handling remains the same. The Etherbone
protocol is designed to be processed as a stream; for UDP datagrams that
stream is simply packed into a single message. For TCP, the stream consumes
the entire TCP connection, probably split into many TCP/IP segments over
the wire.

With UDP operation, each message includes a fresh Etherbone header. The
packet contents can be considered as a (short) Etherbone stream whose format
adheres to Section 5.1. A master should end the cycle by setting CYC in the
last record. By design, an Etherbone response can never be longer than the
Etherbone request which triggered it. Therefore, whenever a UDP/IP request
arrives, the UDP response will fit in the same sized IP frame. Etherbone does
not add reliability to UDP. If reliable operation over UDP is required, link layer
FEC should be used.

For TCP operation, the entire TCP stream appears like a single Etherbone
stream; there is only one Etherbone header at the very beginning of the stream.
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To probe a device requires an initial short-lived TCP connection, since every-
thing after the header is ignored. TCP adds reliability and congestion control
to Etherbone, but at the cost of determinism. Because TCP retransmits lost
segments in order, a single loss will stall all following operations, a phenomenon
known as head-of-line blocking. TCP Etherbone hardware device is also quite
expensive to implement.

For real-time reliable hardware, UDP is the appropriate choice. It is faster,
deterministic, and cheaper in FPGA area. Whenever software requires access
over an unreliable link, like the global Internet, TCP access is the better choice.
One solution to this mismatch is to put an Etherbone TCP-UDP gateway at
the edge of the reliable internal network. This (software) bridge can also imple-
ment access control, requiring TCP Etherbone connections to run over ssh port
forwarding.

5.4 Server / Slave Operation

The Etherbone format was carefully designed to make it stream process. It is
possible to process an incoming UDP datagram and begin sending an outgoing
response without either the incoming or outgoing Ethernet frame ever touching
a buffer. This approach is described in Section 5.4.3.

5.4.1 Header processing

Header may not be fragmented Version is maximum supported in PF and PR.
Widths are all supported in PF and PR.

Any stream with invalid Magic is ignored in its entirety. Otherwise the
Magic is copied to the outgoing stream.

If the PF flag is set, the response stream includes the maximum of the locally
supported Version and the Version included in the request. The response also
lists all supported AddrSz and PortSz. The rest of the incoming stream is
ignored, and the output stream is aligned to 64-bits then terminated.

If the AddrSz or PortSz include multiple entries, the remainder of the stream
is ignored.

5.4.2 Record processing

A response record header is created from a request record header by the following
transformation:

e 0 - RCA

0 — BCA

0 — RFF
CYC — CYC
BCA — WCA
RFF — WFF
0 — RCount
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e RCount — WCount

If RCount is non-zero, the BaseRet Addr is copied from the input stream to
the output stream where it will fill the BaseWriteAddr slot. Each ReadAddr is
then read from either the config space or Wishbone bus according to the RCA
flag. The results are written to the output stream.

If WCount is non-zero, the BaseRetAddr is stored to a variable x. For each
WriteVal, a write is issued to address x on either the Wishbone bus or config
space depending on the WCA flag. If WFF is set, x is incremented by PortSz
after each operation.

While processing writes, an Etherbone slave has two options for the output
stream. It can either write nothing, saving bandwidth, or it can write 7741
zeros. The advantage to filling in zeros is that it makes the outgoing stream
exactly the same length as the incoming stream.

After completion of each read or write operation, the EB slave shifts the
error status into config register 0 (Section 5.2). This can be read by the EB
master to determine the error status of the operation.

5.4.3 Cut-through

To achieve extremely low latency, a hardware Etherbone slave can operate in
cut-through mode. Here, each read/write operation is pipelined to the Wishbone
bus. As the Wishbone acknowledgements arrive, the outgoing stream is filled
in normally.

In order to stream an outgoing UDP frame, the slave must implement a
buffer large enough to fit an IP+UDP header. Once the slave has determined
that it will answer a request (after processing the Etherbone header), it fills the
IP+UDP headers with fields appropriate to respond to the origin device. The
UDP checksum is set to 0 as the UDP payload is not available for checksum in
time for cut-through mode; this is allowed by RFC 768. The outgoing IP length
is set to the same as the incoming length; this is why Etherbone supports zero
padding for write operations.

Streaming out this initial UDP+IP header buys the local bus some latency
for responding to requests. However, the local Wishbone bus must process
requests faster than the physical connection Etherbone uses to send. Otherwise,
the out-going Etherbone stream would starve and create a corrupt packet. Real-
time implementations must, therefore, ensure every slave on their Wishbone bus
has sufficient bandwidth.

One wrinkle that must be dealt with is Wishbone cycle termination. There
are three problems: stalling between cycles, status register stalls, incomplete
cycles. They will be discussed in turn.

Unfortunately, a Wishbone cycle cannot end until all the acknowledgements
have completed. Therefore, before processing the next cycle in the stream, the
Etherbone slave must stall until the previous cycle completes. Each such stall
slowly eats into the latency margin won by the IP+UDP header. The only way
to ensure these stalls do not starve the response stream is to guarantee that
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every operation is acknowledged within the time it takes to stream three words
minus two cycles. Since the record header and address can be queued in one cycle
each, every record wins two words of latency minus two cycles. Since every cycle
includes at least one record and one operation, this means the bus can always
keep up with transmission if the pipeline depth does not exceed three words
delay. To make this concrete, suppose the Wishbone bus is 32-bit wide 125MHz
and the output is Gigabit ethernet. Now, every attached Wishbone slave must
guarantee acknowledgement within 10 cycles (3*32*125MHz/1GHz-2).

The next problem is that the error status register depends on Wishbone
error status codes. Those codes only arrive with the operation completion.
Thus, whenever a record reads the config space, the EB slave must stall until all
outstanding Etherbone operations complete. Fortunately, the same restriction
needed for cycle termination stalls is sufficient to also cover this case. Every
transition from Wishbone bus access to config space access costs at least two
words for the new record header.

Finally, there is the sticky issue about how to handle a stream that never
ends the cycle. There are two options: honour this request or ignore it. If the
device chooses to honour the request, it will block the local Wishbone bus until
the next stream arrives. If it does not honour the requset, an operation that
should have been atomic might be broken. Notice that a software Etherbone
master / client will never issue a request of this form. Unfortunately, transparent
bridging (Section 5.5.3) always generates requests like this. Ultimately, further
operations continuing a cycle from a previous stream is a pathological case
caused by a poorly designed WB master with an in-cycle data dependency
(Section 2.2). The chosen behaviour is left open as an implementation decision,
but it is probably wisest to implicitly terminate cycles on stream end.

5.5 Client / Master Operation

An Etherbone master issues requests to remote Wishbone buses. It might be a
software client, a hardware EB client, or a bridge device that maps a remote bus
locally. In any case, the task is fairly straight-forward: transform read/write
operations into Etherbone messages.

One important design consideration is how to handle read results. The config
space reserves the range 0x8000-0xFFFF for implementation use. Probably the
best implementation approach is to use this space as the BaseRetAddr in read
requests. The resulting write-back can then be matched to the triggering read.

5.5.1 Software Client

A software client is by far the simplest. A small internal table records the
callback information needed for each outstanding cycle. The BaseRetAddr is
used as an index into this table.

Read/write operations are enqueued on a per cycle basis. Once the cycle
is closed, the library looks to see if the writes can be compressed into a FIFO
or sequential write stream. Otherwise it just streams the operations out as a
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sequence of records. Every 64 operations, it injects a config register read to
recover error status codes.

5.5.2 Hardware Client

A hardware client is not much more sophisticated than a software client. We
assume that this client is generating the requests itself, not translating them
from a local bus.

Presumably, it’s requests have a regular format and it doesn’t even need
the sophistication of a software client’s pattern matching for FIFO /sequential
access.

For demanding real-time applications, a dedicated hardware Etherbone mas-
ter is the best approach. Bridging can achieve similar latency, but only a hard-
ware client can fully utilize available bandwidth.

5.5.3 Bridge Mode

Unfortunately, a Wishbone cycle cannot end until all the acknowledgements
are received. The Etherbone bridge cannot issue acknowledgements until it
receives Etherbone responses. Thus, Wishbone cycles cannot complete faster
than a network round-trip. This completely kills the throughput of bridged
bus. Despite the poor throughput, reasonable latency can still be attained.

Keeping this in mind, we can safely assume that any high performance Ether-
bone master will use a dedicated hardware client and not be built on a bridge.
Many sticky implementation issues below can be resolved by trading bandwidth
for simplicity. Given the inherent limitations to bridging, this seems a reason-
able trade-off.

A bridge should start streaming out a fixed length UDP/IP Etherbone re-
quest as soon as a Wishbone cycle begins. Without buffering, an unknown
access pattern cannot be compressed. Therefore, a bridge simply translates
each operation into a separate Etherbone record. Whenever there is no pending
operation, the bridge just writes zeros (an empty Etherbone record). If oper-
ations come faster than space is available in the stream, stall the Wishbone
master until space is available. When the currently streamed message runs out
of space, stall the master until the response has arrived. As most Wishbone
cycles are short, this is a pragmatic way to avoid the huge buffers needed to
fixup reponse message mis-ordering.
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