Detectors and what we use them for at ELISA
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ELectrostatic lon Storage ring in Aarhus (ELISA)




Elisa data
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Ring design: Beam diagnostics:
8.3 m in circumference 4 horizontal pickups
160° deflectors 4 vertical pickups
10° deflectors Scrapers
Stores ions with energies up to 22 keV MCP detectors

per charge



ELectrostatic lon Storage Ring Aarhus (ELISA)
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ELISA = ELectrostatic lon Storage ring Aarhus

Commisioned in 1999

ENTIRELY ELECTROSTATIC

Advantages:
Store ions of fixed charge and energy with arbitrary mass

Useful for study of heavy ions: fullerenes, biomolecules and other
macromolecules

Combined with an electrospray ion source and a multipole ion trap to accumulate
the ions for injection into ELISA.

Two others are operating in Japan, rings in Stockholm, Frankfurt and Heidelberg
are under construction.



Three pieces of information

Lifetimes with respect to dissociation
At what wavelengths ions absorb light

Daughter ion masses



Electrospray ion source
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22-pole ion trap

Extraction
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LASER EXCITED IONS

Laser excited ions
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Lifetimes for statistical dissociation of photoexcited ions

AMP anion
AMP cation

Counts
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Channeltron detector




LIFETIME SPECTRA OF C,,> WITH RESPECT TO ELECTRON LOSS
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SPECTROSCOPY OF C, 2 STATES

1,8 | Resonance states with very short lifetime
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Coulomb barrier for emission
of /=1 electron from CGOZ'

Photon induced tunneling




ABSORPTION SPECTRA OF C.,* AFTER DIFFERENT STORAGE TIMES
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Glass plate detector / secondary electron detector.

Channeltron
detector

9 @ Neutrals

Laser

Glass plate

Neutrals make secondary

electrons when they hit the glass plate
while most of the laser light is transmitted.
Works down to the UV-range



Momentum imaging of ions stored in ELISA



Momentum imaging of ions stored in ELISA
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Intensity P(Ekin,t) [arb. units]
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ELISA: A new scheme for daughter ion mass
spectrometry



ELISA: A new scheme for daughter ion mass spectrometry
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Signal in MCP detector as a function of scaling parameter x and

storage time t,

Dumped beam signal
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Time-resolved fragmentation mass spectrometry on the s to ms time scale




Dissociation of a molecule in the ring
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Consideration for switching times, type of switches ..

Switch times faster than 1 us
Voltages up to 3 kV

Vertical needs to be bipolar

Injection and dump switch — 3 levels.

Injection




Horizontal deflectors:
16 new solid state switches with power supllies

Vertical deflectors:
Replaced by fast amplifiers (bipolar).

All is integrated into the control system.




Counts

Photodissociation of protoporphyrin ions in ELISA with 390-nm light
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Neutrals from collisions with

residual gas

Laser pulse fired after 12.4 ms.

Daughter ion mass spectra were
recorded right after (t,,) and after
190 us (t,;) of storage.
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High-energy CID spectrum (50-keV collisions)

recorded at another instrument

ELISA switch at t,,:
Fragmentation due to both one-

photon and two-photon absorption

ELISA switch at t5:
Fragmentation due to one-photon
absorption since all ions that have

absorbed two photons have decayed.
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ELISA experiments
Collisional cross sections (geometrical size of molecule)

Radiative cooling (emission from infrared active vibrations)

Lifetimes after photon absorption:
statistical decay processes

excited state lifetimes, e.g., triplet states

Electron autodetachment lifetimes

Absorption spectroscopy
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Heating by photon absorption
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Energy distribution changes in time
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Design parameters for ELISA

Ureiberal parutielers
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