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Motivation

In high energy physics there is a need for:

• Measurements of high energy ion beams in the range 
of 1 µA…1 nA without back action (e.g. GSI Darmstadt)

• Measurements of so-called dark currents of 
superconducting acceleration cavities in the range 
below 50 nA (e.g. DESY Hamburg)

• Measurements of charged particles in the CSR (e.g. 
MPI Heidelberg)

Solution: SQUID-based Cryogenic Current Comparator
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Brief introduction to SQUID 
measurement technique 
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SQUID is an acronym for Superconducting QUantum Interference Device 
and is the most sensitive magnetic flux detector known today.

The working principle makes use of:
- superconductivity,
- the flux quantization in superconducting rings, and
- the Josephson effect.

In principle, the SQUID consists of a superconducting ring with one or 
two weak links (Josephson tunnel junctions). We differ between:

 dc SQUID with two Josephson junctions and

 rf SQUID with one Josephson junction only.

Superconducting QUantum Interference Device
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DC-SQUIDs

Simplified scheme of a dc-SQUID 
and a tunnel junction

Output voltage of the SQUID vs. 
external magnetic flux
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SQUID-Characteristics

Voltage-Current-Characteristic of the 
SQUID UJ 111

Output voltage of the SQUID vs. 
external flux for different bias currents



November 25, 2009 W. Vodel, FSU Jena 8/54

Simplified structure of the DC-SQUID UJ 111 (FSU Jena).
jj: Josephson junctions, p: Nb contact pads, m: modulation coil, 
ic: input coil

DC-SQUID lay-out
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Block diagram of the dc SQUID system 5

Simplified electrical scheme of the dc SQUID electronics of Jena 
University with the thin film dc SQUID UJ 111
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4.2 K
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The dc SQUID system 5  of Jena University

Photograph of the complete 3 channel dc SQUID system 5 
electronics with the connected low noise preamplifiers.
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The dc SQUID system 5  of Jena University

1 channel of the dc SQUID system 5 (left) and the 
unclosed low noise preamplifier (right).
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Main principle of the Cryogenic 
Current Comparator
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The CCC, first developed in 1972 by Harvey†, 
consists of:
• a superconducting pickup coil
• a high efficient superconducting shield
• a high performance SQUID measurement system

For absolute current measurements:

I = I1 − I2 = imeas − 0 XX SQUID-
electronics

SQUID

I2I1

I=I -I1 2

† Harvey, Rev. Sci. Instrum., Vol. 43, p. 1626, 1972
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Outstanding advantages of the CCC:

– Non destructive method
– High resolution (< 1 nA/√Hz) 
– Measurement of the absolute value of the current
– Exact absolute calibration using an additional wire 

loop
– Independency of charged particle trajectories
– Independency of charged particle energies
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Resolution limits

The theoretical resolution of the CCC is limited, above all, by the thermal 
noise of the ferromagnetic core material:

– Thermal noise generates a noise current

– In connection with the inductance L this noise current gives rise of the 

magnetic flux noise

– For SNR > 1 the beam signal must meet the condition:

²I

thermalΦ

∫ ⋅=Φ≥⋅=Φ
A

thermalbeam ILfdB ²
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Resolution limits

Minimum detectable current Is:

where T denotes the temperature, µr the relative permeability of core 
material, n the number of windings (n=1), and L the inductance of pick-
up coil according to:
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Resolution limits

Minimum detectable current Is  as a function of temperature and 
relative permeability µr calculated for the currently used single turn 
toroidal pick-up coil.

 Is [10-9 A]

T [K] µr [103]
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Magnetic material

Vacuumschmelze Hanau
• Vitrovac 

– tape material
VC 6025, µr ~ 5.000, 
VC 6155, µr ~ 2.000

– toroidal tape wound cores 
VC 6025 F, VC 6030 F,
VC 6150 F, VC 6200 F
with different µr from 1.200 
to 200.000 at 300 K

• Vitroperm
– toroidal tape wound cores 

VP 250 F, VP 500 F
with different µr from 6.000 
to 130.000 at 300 K

Magnetec Langenselbold
• Nanoperm

toroidal tape wound cores in plastic 
cases in different dimensions
with µr from 25.000 to 100.000 at 
300 K
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Nanoperm- magnetic cores 

Nanoperm-toroidal tape wound cores 

Nanoperm-toroidal tape wound cores M060 
(50 windings)

Nanoperm-toroidal tape wound cores 
M033 (50 windings)

Nanoperm-toroidal tape wound cores 
M074 (50 windings)
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AL-values of magnetic materials at 
low temperatures
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Electrical Scheme of the input circuit
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Current gain

Short circuit current gain 
of a transformer:

Current gain of a 
stressed transformer 
with an inductive load:

Total current gain of the 
system 
(pick up coil – matching 
transformer – SQUID 
input coil:
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– Measurement of high energy ion currents of 
accelerators
Current resolution: ≤ 250 pA/√Hz
(GSI Darmstadt)

– Measurement of so-called dark currents of RF 
accelerator cavities
Current resolution: ≤ 40 pA/√Hz 
(DESY Hamburg) 

Supercond. Sci. Technol. 20, pp. 393-397 (2007)

Applications of the CCC
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The CCC at GSI Darmstadt
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The CCC at GSI Darmstadt

GSI (Darmstadt) and the 
Friedrich Schiller University 
Jena made an impressive 
demonstration of the 
capabilities of a CCC to 
measure extracted high 
energy ion-beams (Ar, Ne) 
with a resolution of: 

0.25 nA/√Hz.
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Motivation for the CCC 
at GSI Darmstadt
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The SIS at GSI Darmstadt

CCC
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Cross section of the CCC 
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Technical details of the CCC
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First beam measurement (20Ne10+)
8.5.1996
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High resolution beam measurement
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The CCC at DESY Hamburg
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Motivation

The performance of superconducting cavities of 
accelerators is characterized by the Q-value vs. 
gradient dependency, measured in a cavity test 
stand (e. g. “CHECHIA” at DESY or “HoBiCaT” 
at BESSY ). 

But unfortunately there is: 
“The existence of so-called dark currents 

(vs. gradient) which may have an influence 
on the accelerator operation”.
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The CCC for X-FEL

In collaboration with Jena 
University, GSI and DESY a 
CCC for the measurement 
of dark currents of the X-
FEL accelerator cavities is 
under construction.
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Dark currents:

– Unwanted particle source
– Limit the accelerator performance by

• Additional thermal load (T = 1.8 K)
• Propagating dark current

– An avalanche instability due to the propagating 
dark current arise if (statistically):
number of emitted electrons/cavity period > 1

– This limits the dark current of a 9-cell cavity to 
idark < 50 nA
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Dark currents:

– Are caused by field emission of electrons in high 
gradient fields 

– The forces of the applied external field are higher than 
the bounding forces inside the crystal structure.

Potential emitters are:
– Imperfections of the cavity shape, e. g. corners, spikes 

and other discontinuities where occur high field gradients 
– Imperfections of the crystal matter, e. g. grain 

boundaries 
– Inclusion of “foreign” contaminants (In, Fe, Cr, Si, Cu,... 

microparticles)
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Dark current simulations

Reference

C. Stolzenburg, “Untersuchungen zur Entstehung von Dunkelströmen in 
supraleitenden Beschleunigungsstrukturen”, (in German); Ph. D. Thesis, 
University of Hamburg 1996.
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CECHIA test facility

The proof measurements will be performed in the so-called 
„CHECHIA” test stand at DESY. 
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Pickup coil with meander-shaped shield

The single turn, superconducting 
pickup coil is arranged on a 
toroidal core (VITROVAC, 
Vakuumschmelze Hanau).



November 25, 2009 W. Vodel, FSU Jena 40/54

Superconducting shielding

• A circular, meander-shaped shielding structure is able to pass the 
azimuthal magnetic field of the dark current, while strong 
attenuating non-azimuthal field components.

• A superconducting shielding material (niobium, lead) leads to an 
ideal diamagnetic conductor (Meissner-Ochsenfeld effect), 
providing an expulsion of external magnetic fields. 

The resolution of the CCC is reduced if 
the toroidal pickup coil operates in the 
presence of external magnetic back-
ground fields. As this is in practice un-
avoidable, an effective shielding has to 
be applied.
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Electrical scheme of the CCC

A DC-coupled field compensation feedback loop is part of the SQUID 
electronics. The SQUID input coil and the pickup coil form a super-
conducting loop, so that the CCC is also able to detect DC-currents.
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Pick-up coil

Toroidal core (VITROVAC 6025-F) 
housed in a VESPEL insulator. 

Completed niobium toroidal pick-up coil 
with included VITROVAC core.
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Experimental equipment

matching transformer

SQUID sensor UJ 111
with heat switch

read-out circuit

heat switch

Nb input terminal

The completed niobium pick-up coil of the 
CCC with all special cabling for the SQUID 
prepared for low temperature tests in a 
wide-neck Helium cryostat. 

Low temperature probe with LTS 
SQUID, matching transformer and 
read-out circuit.
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Measuring head with LTS DC-SQUID 
UJ 111 (FSU Jena)

SQUIDtransformer

Nb terminal
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Schematic view of the CCC

s
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Cross section of the dark current 
measurement equipment

blue: Liquid Helium
green: Superconductive materials

pink: Ultra high vacuum
yellow: Insulating high vacuum of CHECHIA
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Experimental Results
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Noise measurements and SQUID response
(with connected pick-up coil)

blue: test signal (1 ms current pulse)
red: SQUID system response

test pulse

SQUID
response

Spectral flux noise density of the 
SQUID system with connected 
pick-up coil.

2 × 10–4 Φ0/√Hz
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CCC tests with simulated dark current 
(in the noisy environment at DESY)

126.5 nA current pulse through 
the calibration coil (upper curve) 
and SQUID response (lower 
curve).

1.3 nA current pulse through the 
calibration coil (upper curve) and 
SQUID response (lower curve).
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Inductance of pick-up coil

Inductance of the recent pick-up coil of the DESY-CCC in 
dependence of the frequency at different temperatures.
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Spectral flux noise density of the CCC 
using different core materials



November 25, 2009 W. Vodel, FSU Jena 52/54

Measured performance of the DESY-CCC

- System bandwidth: dc...70 kHz

- System sensitivity: 167 nA / Φ0

- Flux noise (in the white noise region): 8×10−5 Φ0 /√Hz

- Corresponding current noise: 13 pA /√Hz

But:
The current resolution of the final system will be decreased 
due to the additional noise contribution of 
- disturbing magnetic background fields and
- mechanical vibrations of environment.
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• Tests of the pick-up coil with connected SQUID system 
were successfully done in a wide-neck LHe cryostat.

• The superconducting meander-shaped flux transducer is 
used to attenuate the magnetic background noise.

• Measurement bandwidth: dc...70 kHz
CCC current sensitivity:  < 200 nA/Φ0

• Noise limited current resolution (at LT Lab) : 40 pA/√Hz
• Noise limited current resolution (at DESY) : 500 pA/√Hz
• Magnetic flux drift of the CCC: < 2 x 10-5 Φ0/s

• Currently the DESY-CCC is ready for installation in the 
HoBiCaT test stand at BESSY. 

Conclusions and Outlook
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SQUID-based CCC:
• No back actions

• Highest sensitivity – no alternatives

• Easily calibrated (by electrical current)

• Measurement of absolute current values

• Negligible low drift
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Simulated beam signal
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