DITANET-Workshop, Nov. 24-25 2009, Hirschberg

A Cryogenic Current Comparator for FAIR

M. Schwickert, H. Reeg, GSI Beam Diagnostics Department W. Vodel, R. Geithner, Friedrich-Schiller-Universität Jena T. Sieber, R. v. Hahn, MPI-Kernphysik Heidelberg

- GSI and the FAIR Project
- Requirements for Low Beam Current Measurements

HELMHOLTZ

GSI

- Cryogenic Current Comparator (CCC)
- Present Developments
- CCC-Prototype at Cryogenic Storage Ring
- Summary

GSI and the FAIR Project

Existing GSI facility: UNILAC & SIS18 as injectors

FAIR: Facility for Antiproton and Ion Research

Modularized FAIR Version

International Steering Committee:

For soon start of the FAIR construction

FAIR Joint Core Team and Scientific and Technical Issues Working Group

were mandated to prepare a proposal for

a start version accounting for recent cost estimates and firm funding commitments

Module	Color	Machine
0	green	SIS100
1	ochre	Experimental hall
2	yellow	Super-FRS
3	orange	p-Linac, p-Bar-Target, CR, HESR
4	blue-gray	NESR, experiment stations
5	red-brown	RESR

FAIR

GSI

SIS100 Synchrotron

SIS100 is the primary accelerator in the FAIR project

- magnetic rigidity of $B\rho$ =100 Tm
- acceleration of high intensity and high energy proton and ion beams
- 3.10¹¹ U²⁸⁺/s or 5.10¹¹ ions per pulse to E= 400 2700 MeV/u

Key parameters from experiments:

for **radioactive ion beams**: long duty cycle or single bunch of 50-100 ns

- for **antiproton production**: acceleration of 2.5·10¹³ protons per pulse to 29 GeV within 5s-machine cycle
- for **plasma physics research**: $5\cdot10^{11}$ U²⁸⁺- ions in single bunch of 50-100 ns to 400 2700 MeV/u

for the research program with **high energy heavy ion beams**: $2\cdot 10^{10}$ U⁹²⁺-ions per cycle.

Technical challenges:

- Very low base pressure p= 5.10⁻¹² mbar (XHV range)
- Careful control of beam loss (e.g. charge exchange 28+→29+) by well designed **collimator system**,
- Superconducting synchrotron magnet operation (ramp rate of up to 4 T/s)
- RF compression system for generation of a single high-intensity bunch
- Layout of **double synchrotron** (SIS100, SIS300) in common tunnel.

Current Measurement for FAIR

Goal of FAIR facility:

production of **'unprecedented' high intensity**, **high brightness ion beams**, beams of rare isotopes and anti-protons

BUT:

At several locations a device required for online monitoring of very low currents of slow extracted ion beams is required

- in extraction chanel of synchrotrons (SIS18, SIS100, SIS300)
- in front of beam dumps (verify complete beam extinction)
- at experiments using slow extracted beams (Super-Fragment Separator, S-FRS)

→ Devices located in High Energy Beam Transport (HEBT) Section of FAIR

PROBLEM:

Typical currents of slow extracted beams (~nA) are well below the detection threshold of regular DC current transformers (~ several μ A)

HELMHOLTZ

High Energy Beam Transport (HEBT) Section

В **SIS18** A SIS100/ **SIS300** G ĸ С p-Bar Target M HALLE (EX Ν **HESR** Super-Fragment **Separator** 1. A. S RESR CR **NESR** Unter dem Körnerbornspfad Unter dem Kömnerbornspfac Ft7 HELMHOLTZ Fair GEMEINSCHAFT 6

The High Energy Beam Transport (HEBT) system provides transfer of ion-, proton- and antiproton-beams:

- to and from the synchrotrons and storage rings,
- to and from the Super-FRS,
- to and from the antiproton production target and separator,
- to the experimental areas.

CCC Installations in HEBT

Beamline	Location	Extraction type	Particle species	Stage
T1S1	SIS18- SIS100	slow, fast	ions, protons	F,
T1X1	SIS100 extraction	slow, fast	ions,protons	AIR Sta (Modul
T1D1	SIS100 ->dump	slow	ions, protons	ırtversio es 0-3)
TFF1	SFRS- Target	slow	ions	Ĕ
T3C1	SIS300 extraction	slow	ions, protons	Pha
T3D1	SIS300 ->dump	slow	ions, protons	se B

For all 6 beam lines above:

minimal Intensity: 10⁴ pps

maximal intensity: 10¹² pps

lon	maximum beam current
р	160 nA
U ²⁸⁺	4.5 µA

CCC-Principle

Measurement Principle

Idea: high-resolution detection of the beam's azimuthal magnetic field

- Ion beam induces screening currents in superconducting pick-up coil with ferromagnetic core
- Coil signals fed to sc transformer for impedance matching
- Readout via DC SQUID for sensitive detection of coil magnetic field (SQUID: UJ 111, Nb-NbO_x-Pb/In/Au window-type Josephson tunnel junctions with dimensions of 3 µm x 3 µm

Important: extensive shielding against magnetic noise

 \rightarrow meander-shaped niobium structure to suppress non-azimuthal field components, e.g. 14 ring cavities allow for 200 dB shielding factor

HELMHOLTZ

GEMEINSCHAFT

GSI

The GSI Precursor - Setup

GSI prototype in 1997

Purpose-built bath cryostat

SQUID and readout electronics

7×10⁹ Ar¹¹⁺ at 300 MeV/u

Special Requirements / Challenges

Possible Optimizations to Improve CCC Sensitivity / Reduce System Noise

- 1. DC-SQUID (approaching quantum limit, mature device)
- 2. magnetic shielding
 - goals: use Nb instead of Pb (GSI prototype),
 - higher number of meander rings
- 3. ferromagnetic core material

$$\frac{I_s}{I_N} \propto \sqrt{\mu_r} \quad \xrightarrow{\rightarrow s} \max_{r \in I_n}$$

→ search for core material with highest relative permeability

Engineering Challenges:

- Production of **Nb-shield** (delicate Nb structure, electron-beam welded in clean room)
- Manufacturing of **toroids** with great diameter (Custom-made devices, low quantities)
- **local cryogenics** (standalone liquid He supply/cold head, problem e.g. in radiation safety areas)
- microphonic effects (reduction of vibrations, decoupling)

Present CCC Developments

Friedrich-Schiller-University Jena:

SQUID-Electronics:

Increase in modulation frequency to 350 kHz (higher bandwidth)

Pickup coil:

Optimization of the magnetic shielding (~200 dB, depending on gap width and number of meanders) Studies on toroidal core material with high μ_r with test cryostat

Present result: use NANOPERM instead of VITROVAC, because of high permeability over a large frequency range ($\mu_r \approx 50000$, f ≈ 1 Hz - 70 kHz)

Currently achieved resolution: 40 pA/ \sqrt{Hz} (under laboratory conditions), thus current measurements in the sub nA range might become possible.

GSI Darmstadt:

Specification and layout for FAIR 'standard' CCCs

Future: Production of CCC prototype

MPI-K Heidelberg:

Mechanical and cryogenic design of a CCC for new Cryogenic Storage Ring

Future: manufacturing and assembly of CCC as prototype for FAIR

M. Schwickert, DITANET-Workshop, Hirschberg, Nov. 23-24, 2009 11

(Steppke, Geithner, Vodel et al., IEEE Transactions on Appl. Supercond., Vol. 19 No. 3, June 2009, p. 768)

CCC-Application: Cryogenic Storage Ring of MPI-K

CSR Key Features:

Electrostatic ring

35 m circumference

XHV vacuum system ~1E-13 mbar

Cryogenic Storage Ring CSR presently under construction at Max-Planck-Institute für Kernphysik / Heidelberg

(-> presentations of R. v. Hahn, M. Grieser, F. Laux)

Operational temperature <10 K Injection Injection Neutral PPU+Quartz BTF Kicker PPU Molecules Beam (+Laser) Particle energy: 10 - 300 keV [Quartz/ Beam intensity: 1 nA – 1 µA Quartz Reaction Microscope Detectors Current measurement device for: - Schottky PU 39° Deflectors Multi Purpose Diagn. Chambers - Lifetime measurements PPU+Ouaitz - Determination of reaction rates / cross sections -PPU IPM - Pickup calibration Crossed Beams/ Diagnostics Section SOUID CO 4π Experiment PPU PPU+Quartz Below the sensitivity threshold of Quadrupoles standard DC-Current transformers Electron Cooler/ Target 6° Deflector Quartz **Common development** MPI-K / FSU Jena / GSI: Detectors A CCC for the Cryogenic Storage Scraper (e⁻ / Ions) RF-Gap Ring as prototype for FAIR CCC (Figure courtesy T. Sieber, MPI-K Heidelberg) HELMHOLTZ GEMEINSCHAFT

CCC Prototype for CSR

Development of a mechanical and cryogenics design for a Cryogenic Current Comparator (CCC) with SQUID sensor

Common Requirements CSR & FAIR:

- mechanical and cryogenic design: all components have to be cooled down to liquid Helium temperature
- temperature stability 50 mK to minimize noise and zero drift
- Suppression of mechanical vibrations: thermally isolating feet on massive, mechanically decoupled ground plate

CSR specific:

- CSR has operation mode at room temperature
- \rightarrow separate thermal shielding
- upper temperature limit for toroidal core and SQUID: 80° C
 - → water-cooling needed for CSR bakeout

(Figures courtesy T. Sieber, MPI-K Heidelberg)

HELMHOLTZ

Summary

GSI and FAIR

- versatile accelerator facility for high intensity, high brightness ion beams
- modularized start version
- 6 CCC to be installed in FAIR HEBT for online current measurement of slow extracted beams

Cryogenic Current Comparator

- detection principle
- GSI CCC-precursor (resolution 250 pA/√Hz)
- detailed component studies in Jena include µ_r as a function of temperature, frequency etc.
- present CCC resolution: 40 pA/√Hz

CCC for Cryogenic Storage Ring CSR

- definition of mechanical requirements
- design study on mechanical/cryogenic layout

Many thanks to our Collaboration Partners:

- W. Vodel, R. Geithner, Friedrich-Schiller-University Jena
- R. v. Hahn, T. Sieber, MPI-Kernphysik, Heidelberg
- A. Peters, HIT, Heidelberg

